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Superfluidity in Clusters of p-H2 Molecules
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Path-integral Monte Carlo calculations have been used to study small clusters of p-H2 molecules at
low temperatures. Below about 2 K, clusters of 13 and 18 molecules exhibit manifestations of superfluid
behavior. However, exchange permutation of molecules is greatly suppressed in a cluster of 33 mole-

cules, even at 1 K.

PACS numbers: 67.20.+k, 36.40.+d, 67.40.Db

The possibility that liquid parahydrogen (p-H2) might
exhibit superfluid behavior was raised some time ago [1].
Although the p-H2 molecule obeys Bose statistics, and
has a lighter mass than "He, the stable low-temperature
bulk phase is not a superAuid but an hcp solid. So far, at-
tempts to produce a superfluid by supercooling the nor-
mal liquid below the triple point of 13.8 K have been un-
successful [2]. A possible way around this problem might
be to produce small clusters of p-H2 molecules in a
molecular beam [3,4]. Indeed, the analogous case of He
clusters has attracted considerable interest [5-11]. At-
tempts to provide experimental evidence for superfluidity
in clusters have so far proved to be inconclusive [11].
However, path-integral Monte Carlo calculations on

small He clusters of N=64 and 128 atoms revealed
significant superfluid fractions below T=2 K [8].

Here, we report the results of a low-temperature path-
integral Monte Carlo study on clusters of p-H2 molecules
that specifically includes the eff'ect of Bose statistics. The
method we employ and the calculational procedures have
successfully probed the superAuid transition of bulk liquid

He [12], the two-dimensional counterpart [13], and the
nature of He clusters [8]. Our main finding is that,
below about 2 K, the superfluid fractions in clusters of
N=13 and 18 p-H2 molecules become large. In particu-
lar, at T=1 K, most of the molecules in these clusters are
participating in permutation cycles analogous to those
occurring in superfluid bulk liquid He. The present re-
sults complement and extend a recent variational Monte
Carlo calculation which suggested that clusters consisting
of up to seven p-H2 molecules have a "quantum-liquid-
like ground state" [14].

At the densities relevant to clusters, p-Hq molecules are
well described by spherical (J=0) rotational wave func-
tions. Accordingly, it is sufficient for our purpose to em-

ploy a spherical interaction potential. In order to avoid
having to include many-body forces we use an "eflective"

pair potential that gives a good account of the equation of
state of bulk solid H2 [15].

The properties of a p-Hq cluster are embodied in the
density matrix. In the Feynman path-integral representa-
tion this is factored into M time slices, a procedure that
leads to the notation of a discretized path and the possi-
bility of utilizing a temperature factor I/M lower than

P =kT. The density matrix for a Bose system is obtained
by summing over all permutations of particle labels [12].
A generalized Metropolis algorithm is used to carry out
the integration over paths and the summation over all
permutations [12]. The present calculations are techni-
cally similar to those carried out on He clusters [8]. The
interested reader is referred to the literature for addition-
al details [12,13].

Bulk liquid He is usually described in terms of the
two-fluid model. The superfluid fraction can be comput-
ed either from properties of the discretized paths or from
the momentum density correlation function [12). The
normal-Auid fraction can be obtained from the response
of the system to an external influence. In the present
case, the p-H2 cluster is imagined to be in an external
field which has cylindrical symmetry about an axis pass-
ing through the center of mass. We then consider the
response of the cluster to slow rotation of the field, a pro-
cedure employed to study He clusters [8]. As in that
case, the superAuid fraction can be determined by the
departure of the cluster's moment of inertia tensor I from
its classical value I* or from the angular momentum den-
sity correlation function (L(r). L(0)), where L denotes
the total angular momentum.

For a classical system with density distribution p(r),
the moment of inertia is given by I*=m fdr p(r) ~u x r~ .
The normal fraction is the part of the cluster that
responds as a classical system, namely,

I/I* =P[(L L) —(L)(L)j I*/.
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An appropriate estimator for the th-
ion o is required and this was developed in our previ-

ous work [8]. For a given rotation axis, the deviation of
i s c assica value can be re-t e moment of inertia from it 1 1 1

ate to the expectation value of the square of the surface
area enclosed b the Fy e Feynman paths projected onto a
plane perpendicular to that axis. Alt ernatively, the mo-
ment of inertia, and therefore the norm 1 frma raction, may
be computed from the probabil't th hi i y at t e projection of
angular momentum L on an arbitrary axis has the value
nh. Bosons show fewer fluctuations i 1s in angu ar momen-
um t an classical artiep icles by an amount proportional to

the superfluid fraction, (I* I)/I*.—
Path-integral Monte Carlo runs
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point to study the same number of -H
T=0.5 K. U
into an
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low acce tptance rate for permutations. A N =64 1
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'
th

slightest hint o1

gain, t ere was only the
1 gh int of permutations occurring in the cold clus-

ter. This finding may be of little relevance to beam ex-
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possible before nucleation sets in t

' 't's in o inittate freezing [4].
Unfortunately, an extensive study of the eflects

o ing e =64 cluster was not possible due t th
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ueo e
e. ccordingly, wesive emands on computer time. A

next carried out a systematic st d f
3.

s u y o a cluster with
This was built from an icosahedral core (a cen-

tra molecule abutted by two rings of five molecules and
cappe top and bottom), plus an outer shell of twenty ad-
ditional molecules. The %=33 1 tc uster was investigated
at a variety of temperatures ranging up to 10 K. The
temperature dependence of the energy is shown in Fig 1

0.10
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and the radial density profile in Fi . 2. S
emperature runs gave hints of superfluidlike behavii i e e avior

oug it is compact, the chosen initial
con guration, which had an atom at the
not the r

a e center of mass, is
o e ground-state structure for the N =33 clu

latter has a enta
e = c uster. The

a pen agonal bipyramidal core, as in the case of
a classical N=33 cluc uster whose atoms interact with a

is explains why below 5Lennard-Jones potential [16]. Thi

[171.
t e profiles for this cluster lack density t th

'
y a e origin

Next, we studied an icosahedral cluster with N=13.
To our delight, around 3 K, the molecules in this cluster
exhibited a significant propen t f
mutation cycles and this behavior increased substantially
when t e temperature was lowered to 1 K. F'

u ie a cluster with N=18 which w f d b
o . inally, we

was orme by add-
ing five additional molecules to the surface of the
icosa e ral cluster. This also exhibited superfluidlike be-

igure shows results for the energy
as a function of ternemperature for the cluster with N =13
and two points for a cluster with N =18.

In a Monte Carlo calculation, there is always a chance
ing a simu ation at finitet at molecules will evaporate durin

'
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but les
temperature, a problem that is particularly ac t f H

ess so for the more strongly bound p-Hz clusters. To
prevent possible evaporation at th h he ig est temperatures

a s o ie wit in a radius R,we restricted the Feynman path t 1'

rom the center of gravity of the paths [8]. The present
choice was R, =10, 12, and 14 A for th

, and 3, respectively. The density in th 1in e tai

erature bu
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FIG. 3. Temperature evolution of the normal fraction in the

p-H2 clusters with IV=13 (open diamonds), 18 (crosses), and
33 (solid circles), respectively. The solid curve is the experi-
mental result for bulk He.
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FIG. 4. Evolution with temperature of the fraction of the ra-
dial density profile due to permutation cycles involving six or
more molecules. The curves correspond to 2, 1.6, and 1 K for
%=13, 2 and 1 K for 4'= l8, and 1 K for %=33.

K, the profiles appear liquidlike. Indeed, in the core
region the density is essentially identical to that of
superIIuid He clusters [8]. Below this temperature a
well-defined shell structure is present that changes very
little as the temperature is lowered. We have verified by
independent calculation that below 5 K physical exchange
of particles occurs even in the absence of Bose statistics
[17]. This observation explains why there is little varia-
tion in the density profiles below 5 K and why the profiles
for N =13 do not fall to zero between the two peaks.

The calculated temperature dependence of the normal
fraction in each cluster is shown in Fig. 3. For the N =13
and 18 cases values significantly less than 1 occur at a
higher temperature than previously found for "He clus-
ters [8]. Since the number densities of the p-H2 and He
clusters are approximately the same, a corresponding-
states argument implies that the superAuid transition
temperature should scale with the particle mass [1,2].
The results in Fig. 3 therefore suggest a slightly enhanced
eAective mass for p-H2, compared to He, no doubt due
to the deeper interaction potential [15].

The probability that a p-H2 molecule is part of a per-
mutation cycle involving p molecules can be used to pro-
vide a local measure of the degree of superfluidity, if p is
not too small [12]. In Fig. 4 we show the temperature
dependence of II(r), the fraction of the radial density
profile due to molecules involved in permutation cycles of
six or more. The calculated probability for large permu-
tation cycles increases significantly below 2 K for the
N=13 and 18 clusters. This measure of the superAuid
density indicates that initially mostly the surface mole-
cules are involved in large permutation cycles. This
phenomenon is greatly suppressed in the N=33 cluster.
Moreover, only at the lowest temperature does the central
molecule in the N =13 cluster participate. As mentioned
above, physical exchange of the particles including the

central molecule occurs above 2 K. In view of the struc-
tured nature of the low-temperature radial density profile
shown in Fig. 2, the N=13 cluster might perhaps be
thought of as a "supersolid" rather than a superlluid [181.
Figure 5 compares snapshots of typical Feynman paths
for the 1V=13 cluster at 2 and 1 K. Clearly, at the lower

temperature this cluster is a highly quantum object.
In summary, at sufficiently low temperatures, small

clusters of p-H2 molecules have been found to indeed ex-
hibit properties characteristic of a Bose-condensed system

[3,4]. Experimental verification of the present findings
will no doubt provide an extremely challenging task. The
use of a nozzle beam would seem to be a natural way to
attempt to produce such clusters [4]. However, the
"superfluid" behavior comes about, in part, because the
density of the clusters is about 30% less than that of the
bulk solid. It might therefore prove informative to once

T =2K

FIG. 5. Snapshots of typical Feynman paths projected onto
an arbitrary plane taken from the simulation of the N=13 clus-
ter at (a) 2 K and (b) 1 K. The indicated scale spans 12 A.
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again investigate p-H2 molecules at low temperature on a
surface [1,19] or in a porous solid [20].
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