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Three-Dimensional Simulations of the Implosion of Inertial Confinement Fusion Targets
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The viability of inertial confinement fusion depends crucially on implosion symmetry. A spherical
three-dimensional hydrocode called pLATo has been developed to model the growth in asymmetries dur-
ing an implosion. Results are presented of the deceleration phase which show indistinguishable linear
growth rates, but greater nonlinear growth of the Rayleigh-Taylor instability than is found in two-
dimensional cylindrical simulations. The three-dimensional enhancement of the nonlinear growth is
much smaller than that found by Sakagami and Nishihara.

PACS numbers: 52.35.Py, 52.65.+z

An important issue facing inertial confinement fusion
(ICF) is implosion symmetry. A typical ICF target can
be characterized as passing through three phases: ac-
celeration, coasting, and deceleration [1]. Initially the
shell is accelerated inwards and the Rayleigh- Taylor
(RT) [2] instability grows on the outer ablation surface.
When the shell reaches its maximum velocity it coasts in-
wards with no acceleration. Although not unstable, the
large spherical convergence can amplify the distortion
further. As the pressure inside the filler gas increases, the
shell is decelerated and finally brought to rest. In this
final stage the shell is again RT unstable, but this time on
the inner fuel-shell interface.

In the acceleration phase 2D simulations [3-5] have
shown a reduction in the RT linear growth rate to one-
half of the classical value. This has been confirmed by
experimental results [61. Recent 3D results [7] in planar
geometry have shown linear growth rates similar to 2D,
but enhanced growth in the nonlinear regime. In the de-
celeration phase the RT instability is expected to behave
classically. Simulations have been performed by Saka-
gami and Nishihara in cylindrical geometry in 2D [8]
and recently using a Cartesian code in 3D [9]. Sakagami
and Nishihara have found no diAerence in the 3D linear
behavior compared to 2D. They find that the nonlinear
regime obeys an ggt law, with an g up to 6 times the
value of comparable 2D cylindrical simulations.

We report here on our simulations of the deceleration
phase using PLATO. Our results are compared to similar
2D cylindrical and spherical simulations but we do not
find the large increase in nonlinear growth as reported by
Sakagami and Nishihara. PLATO is a 3D, spherical hy-
drodynamics code with a fixed Eulerian grid. The time-
dependent equations of mass, momentum, and total ener-

gy are integrated numerically using the van Leer [10] al-
gorithm as interpreted by Youngs [11]. The fluid equa-
tions are closed using an ideal (y = —', ) equation of state.
Currently thermal conduction, laser energy deposition,
and a-particle heating are not included. In order to accu-
rately model implosions a fine resolution is needed. The
large number of grid points needed to model a full sphere
would require a large amount of memory and long run
times. To reduce the memory requirement the computa-

tional grid was reduced from the full sphere by using the
symmetry of Platonic solids.

At present we are employing the symmetry imposed on
the target by the Rutherford Appleton Laboratory's
twelve-beam Vulcan laser system. The point of intersec-
tion of the center of each laser beam with the target sur-
face defines the symmetry of the target. These points
form the vertices of twenty equilateral triangles on the
surface. Since the triangles are equilateral the sides can
be bisected and six smaller triangles formed from each
equilateral one. Hence the smallest self-similar com-
ponent is l,', th of the sphere. This segment of the sphere
is modeled in all our simulations. The exploitation of the
symmetry imposed by the laser beams is valid when all
the beams are balanced. Our modeling is consistent with
the RT instability being seeded by the laser beam struc-
tures.

At the start of an ICF implosion a shock wave is
launched into the stationary fuel. The shock wave is
reflected at the origin and travels outward colliding with
the incoming shell marking the beginning of the decelera-
tion phase. To a good approximation we found that
the radius of the inner surface (R~) obeys R~ =R~
+0.5g(t —t,), where R.

~
„- is the inner surface radius

at the time t „. of maximum compression. When the cen-
tral hot-spot region satisfies the conditions for fusion, it
ignites and a burn wave propagates outwards. The de-
celeration phase ends at this time with the remainder of
the shell rapidly expanding. In the absence of a-particle
heating the shell continues to obey the above equation for
R]. It is during this deceleration phase that the inner
surface of the shell is RT unstable.

We started the simulations by modeling the coasting
phase with a one-dimensional (1D) 60-Itm-thick unper-
turbed shell of density 5.0 g/cm at an initial radius of
130 pm coasting at a velocity of 1.5 X 10 cm/s into a sta-
tionary fuel of density 0.5 g/cm . The region outside the
shell had a density of 0.5 g/cm and the same initial in-
ward velocity. A uniform pressure of 2.0X 10' dyn/cm
was used in all regions. Because the acceleration is not
modeled the initial shock is launched into the fuel with
the shell already accelerated, which is not the case in real
ICE implosions. When the reflected shock wave was al-
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most incident on the inner surface of the shell, at 0.626
ns, the one-dimensional profiles were converted to 3D.
The radial cells were uniform with a resolution of 0.5 pm.
There were ten grid points in each of the 0 and tt direc-
tions giving twenty cells per wavelength. Additional
simulations performed with thirty cells per wavelength
sho~ed no substantial difTerence. In order to maximize
the size of the cells the grid was uniformly spaced in p,
but nonuniform in 0. All boundaries were rejective, ex-
cept the outer radial one, which was open. The 1D densi-
ty profile was perturbed by imposing a variation of ampli-
tude in the position of the inner surface. We assume that
each laser beam generates the same angular pattern. The
perturbation is thus the sum of the Legendre polynomials
from all twelve beams. The lowest-order mode which can
be imposed on a balanced twelve-beam system is the
sixth-order Legendre polynomial summed over the laser
beam poles.

The arrangement of the laser beam implies that the
mass distribution [a(0,&)] can be expressed as the sum of
all Legendre polynomials summed over the laser beams:

12

n=o b=l

where the coe%cient a„ is the mass amplitude of the nth
mode. In a way analogous to Fourier theory we can ob-
tain the coefticient of the kth mode as follows. At select-
ed times the mass distribution is obtained by integrating,
from the center through the shell to the outer boundary,
the product of the density and radius squared. This is
multiplied by the kth Legendre polynomial and integrat-
ed over all angles. This gives us a measure of the RT
growth, which we refer to as the mass mode amplitude.
The evolution of the mass perturbation is a signature of
the RT instability; in secular growth no such movement
of mass would be noted. An alternative measure of the
RT growth is to calculate the distance (AR1) between the
tip of the spike (R1;„) and the head of the bubble
(R1 m.„„).The inner surface of the shell (R1) is defined as
the surface whose density is 1/e of the maximum density.
Simulations were also performed using a constant-density
definition for h, R~,' these showed almost identical growth
rates.

First we model the linear regime by placing a small-
amplitude (8o =0.005R1) perturbation on the target.
With this perturbation we find linear growth with a
growth rate of 5.41 ns '. For the simulation parameters
the shell underwent an acceleration of 2.62 X 10' cm s

Peak compression was achieved at 1.03 ns at a radius of
3.5X10 cm. The Atwood number was approximately
0.84. This gives a classical planar growth rate of 6.15
ns, implying a reduction to approximately 90% classi-
cal. Unlike the classical linear theory the inner-shell in-
terface has a finite density gradient which may be respon-
sible for the small reduction in the classical growth rate.
Also, Jk changes during the implosion. 2D simulations
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FIG. l. The inner surface of the shell (defined as the surface
of constant density equal to I/e of the maximum density) at
1.226 ns. This sho~s the bubble-ridge arrangement.

with the same initial conditions were also performed in
cylindrical and spherical geometry. The cylindrical case
used (r, 0) geometry ignoring the z direction. The spheri-
cal case used (r, 0) geometry allowing no dependence on
the p direction. Spherical geometry has a pole (the z
direction from which 0 is measured) which is essentially a
3D feature. In 2D simulations we were able to use a finer
resolution. The reduction from the classical growth rate
in all the 2D simulations was identical to the reduction
observed in 3D, doubtless because any 3D perturbation
can be decomposed into a sum of spherical harmonics.

To assess the nonlinear behavior the initial amplitude
of the perturbation was increased (Bo =0.1R1) so that the
linear regime saturated quickly. We have plotted in Fig.
1 the inner surface of the shell (R1) near the end of the
simulation at 1.226 ns. We see a single well-defined bub-
ble rising up, surrounded by a series of interconnecting
spikes falling to form ridges. We have termed this the
"bubble-ridge" arrangement.

When we invert the initial perturbation (6R —6R),
which physically means having strongly focused beams
with little beam overlap, the shell distorts quite dif-
ferently. Now thin spikes penetrate into the fuel which
are surrounded by a valley of interconnecting bubbles.
This we have termed the "valley-spike" arrangement.
Although the initial perturbation is a pure inversion the
simulation does not remain purely inverted. In particu-
lar, the bubble in the bubble-ridge arrangement breaks
through the back of the shell, which was not observed in
the valley-spike arrangement.

In Fig. 2 we plot the evolution of hR
~

for both the nor-
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FIG. 2. The time evolution of the difference (AR~) between

the head of the bubble and the tip of the spike for the bubble-
ridge (curve A) and valley-spike (curve B) arrangements.
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FIG. 3. The time evolution of the sixth-order mass mode am-

plitude for the bubble-ridge thin- (curve A) and thick-shell
(curve B) and the valley-spike thin- (curve C) and thick-shell
(curve D) simulations.

mal and inverted arrangements. We see that there ap-
pears to be no difference in the evolution and growth of
each arrangement. We achieved a best fit by an ggt law
with a value of q=0.23. We have compared this with
corresponding simulations in 2D spherical and cylindrical
geometries. The 2D spherical simulations were run with
both a bubble at the pole and a spike at the pole; in both
cases we find that g has the slightly larger value of 0.25.
However, in cylindrical geometry g =0.18.

The evolution of the mass mode amplitude is quite
different (Fig. 3) from that of AR|. Now the bubble-
ridge arrangement has a higher growth rate than the
valley-spike one. In both cases the mass mode amplitude
evolves proportionally to gt . The mass is redistributed
more quickly in the bubble-ridge arrangement, resulting
in the earlier disruption of the shell. This conclusion is
supported by 2D simulations. 2D spherical simulations
with the bubble centered on the pole of the coordinate
system show growth comparable with the 3D bubble-
ridge arrangement. However, 2D cylindrical simulations
show lower growth.

The differences between 2D and 3D and between the
two 2D geometries can be explained by considering the
nature of the bubble in the different geometries. In the
bubble-ridge arrangement we have a truly 3D bubble sur-
rounded by a ridge of interconnecting spikes. Similarly
in the 2D spherical case, where a bubble is centered on
the pole, the bubble is essentially 3D, surrounded by a
ridge around the waist. In the 2D cylindrical case the
bubble is in reality a valley running around the sphere.
In the 3D case the bubble has a larger boundary to feed
mass into the spike than in the 2D cylindrical case. Let
us assume that the growth cari be expressed as the prod-
uct of the length of the boundary between the bubble and

spike and the mass Aux Aowing across the boundary nor-
malized to the area of the bubble. In 3D the bubble can
be thought of as a hemisphere of radius X/4 (where k is
the wavelength of the perturbation). The perimeter of
the bubble is 2rrk, /4 and the area of the hemisphere is
2rr(A/4) . In 2D the bubble is a half cylinder of length a
and radius k/4. The boundary between the bubble and
spike is thus 2a and the area of the bubble is arrX/4 In.
order to obtain a in terms of k we compare the growth of
bubbles with the same area; hence a =) /2. The boundary
in 2D is thus equal to X. The boundary in 3D is rr/2

larger than in 2D, allowing mass to pass from the bubble
to the spike more easily in 3D, and hence giving a faster
growth. Sakagami and Nishihara's results support this
conclusion; faster growth occurs in spherical harmonics
which maximize the boundary between bubble and spike.

Sakagami and Nishihara find a much larger difference
between 2D and 3D. They find 0.2 in 2D, but @=0.8-1.1

in 3D. The growth is characterized by them in terms of a
mode amplitude calculated by integrating the mass densi-
ty in the radial direction away from the center of the tar-
get. This can only be related to gt (a distance) by scal-
ing the amplitude by a dimensional quantity. There is
considerable uncertainty in the required scaling factor
which is further complicated by the change in density and
size of the target as it compresses. We suspect that the
explanation of their large g lies in the choice of a scaling
factor.

Youngs [12] has performed 2D and 3D simulations of
the classical RT problem. He characterizes the ampli-
tude in terms of a mixing width. In the earlier part of the
nonlinear regime, before the small-scale turbulence has
developed, he finds that 3D evolves 1.S times faster than
2D. When small-scale turbulence has developed, then the
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3D growth slows to that of 2D. Hence his 3D increase in
the early phase of nonlinear growth is consistent with our
results.

Let us now examine the diA'erences between the two
forms of 3D evolution by looking at the mass distribution
a((),&). The bubble-ridge arrangement always has less
mass in its minimum radial line [o. ;„(0,&)] and the rate
at which it thins is always greater than in the valley-spike
arrangement. Conversely, the valley-spike arrangement
always has more mass in its maximum radial line
[cr „. ,(O, p)] and the rate at which it thickens is always
greater than in the bubble-ridge arrangement. The
bubble-ridge arrangement is essentially better at bubble
development, whereas the valley-spike arrangement is

better at spike development. Shell thinning is therefore
more rapid in the bubble-ridge arrangement. This shell

thinning can cause the shell to break up, preventing fur-
ther compression and allowing the fuel to escape. As the
bubble increases in size, the mass of the shell at the bub-
ble head is reduced, leading to a higher acceleration rela-
tive to the rest of the shell. The bubble then sheds mass
more quickly. This suggests that thinner shells would
have a more rapid evolution of the bubble. The valley-
spike geometry has less well developed bubbles so the
eA'ect of the shell thinning would not be as important.
Curve 2 of Fig. 3 shows the growth of the bubble-ridge
arrangement with a shell of two-thirds the thickness, but
with the same mass, showing higher growth than the
thicker shell.

In conclusion, we have reported 3D simulations of the
deceleration phase of an ICF target. We have obtained
linear RT growth rates which are 90% of the classical
value. These have been found to be identical to similar
2D cylindrical and spherical results. In the nonlinear re-

gime we have found a faster mode evolution in 3D simu-
lations than in 2D cylindrical geometry. This has been at-
tributed to the greater bubble-spike boundary in 3D. We

have observed two possible geometries in which the RT
instability can grow in 3D: the bubble-ridge and valley-
spike arrangements. The mass mode evolution of the
bubble-ridge geometry is faster. Shell integrity is main-
tained for longer if the shell is driven more strongly im-
mediately under the beams rather than at the intersec-
tions of the beams. We do not find the much greater non-
linear growth in 3D found by Sakagami and Nishihara.
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