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Nonlinear-Interferometric Generation of Number-Phase-Correlated Fermion States
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We propose a nonlinear-interferometric scheme for generating two fermion states correlated in parti-
cle number or in wave phase. This scheme can be used for surpassing either the standard quantum limit
of the number-partition noise or that of the interferometric phase sensitivity, up to a factor of the order
of (total particle number) '~'. A possible experimental scheme in a mesoscopic system is discussed.
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The phase sensitivity of an interferometer is improved
by utilizing phase-correlated states. For optical inter-
ferometers, squeezed states are available for this purpose
[1,2]. Yurke has pointed out that the phase sensitivity in
fermion interferometers can reach 2/N, where N is the to-
tal particle number [3]. He also gave specific states that
exhibit this limit, although he did not oAer any means of
preparing such states. Number-correlated light beams
(twin photons) have been generated using parametric
lluorescence [4]. A scheme for generating number-
correlated fermions, however, still remains to be found.
In this Letter we propose a scheme for generating either
number-correlated or phase-correlated fermion states.
These states may be referred to as squeezed fermion
states in the sense that uncertainty of a certain observ-
able for the combined system is suppressed below the
standard quantum limit.

We use a nonlinear Mach-Zehnder interferometer as
shown in Fig. 1, where two quasimonochromatic fermion
fields

g(z, r) = gage'
k

B(z,i) = ' gbke'"
k

are propagating and interacting through the interferome-
ter. Fermion creation and annihilation operators ap and
al, for system 2 and bI, and bI, for system B obey the

HI =kg e ' gakbk+e' gbkak =2hgn S,
It. k

(2)

where g) 0 and n—= (cosp, sin&, 0). This interaction cou-
ples two fermion systems as

anticommutation relations: [ak, ak j =6kk, jai, ak j =0,
jbk, bk j =bkk, jbk, bk j =0, [ak, bk j =0, and [ak, bk j =0.
L denotes the quantization length. Various accents in
Fig. 1 distinguish the fields and the associated operators
at different points. Fermions are fed only to an input port

L[ is an input linear coupler which divides an input
fermion field Ao into 2 and B. CC is a nonlinear coupler
which establishes a quantum-mechanical correlation be-
tween 2 and B. The output fields of this coupler, 2 and
B, are combined at another linear coupler L2, yielding
suitably correlated outputs 2 and B.

The two interacting fermion systems can be expressed
in terms of spin operators S =(S„,S~,S-),

S+ =Qaktbk, —S- = —, (Ng Na), —
k

~here S+ =S, + iS,„N& =gqak ak, and N& =ggbkbk
If Ao has %0 fermions and Bo is in the vacuum state, the
combined system So is in the simultaneous eigenstate of
S and S-,

s'is, s) =s(s+1)is, s&, s is, s) =sis, s&,

where S =No/2 [3].
Linear couplers or beam splitters are described by the

interaction Hamiltonian

A

CC
cos(O/2)

—ie'~ sin(n/2)

x—ie '~sin(Q/2)

cos(Q/2) bk
(3)

B,

hg NA rw where 0 =2gi with T: being the interaction time. In spin
notation, it corresponds to a rotation of the spin through
the angle 0 about the axis n lying in the x-y plane,

FIG. l. A schematic illustration of the nonlinear Mach-
Zehnder interferometer with a Coulomb coupler as a correlated
fermion generator. The solid lines denote paths for fermions.
Ll is an input linear coupler which splits an input fermion field
Ao into 8 and B. CC is a Coulomb coupler which establishes a
quantum-mechanical correlation between 8 and B. L2 is an
output linear coupler which combines 8 and 8 to make suitably
correlated outputs A and B.

S'=exp(iOn S)Sexp( —i An S) . (4)

Let Ll be a 50% coupler with 0 =x/2 and n =y be a
unit vector pointing in the +y direction. It rotates the
spin about the J axis through n/2, giving an eigenstate of
S„described by the coherent spin state i0, &) =inc/2, 0)
[5]. Since (S,) =0, A and B contain the same average
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number of fermions (N~) =(Nq) =No/2, and N =N~
+Np is a constant of motion (=lVo). This is a conven-
tional equal partition of a fermion source by a linear
coupler. For later reference, let us find correlations in

particle number and in wave phase between these two fer-
mion systems. The correlation in particle number is mea-
sured by the standard deviation of the number diA'erence,

aN =—([~(N, —N, )]') '"=2(~S ') '"=N'" (5)

while the correlation in wave phase is measured by the
standard deviation of the phase diAerence,

(~S,, ') '"
a(t =—([a((t» —y&) l') '"=

((S„)]

(6)

The minimum detectable phase diA'erence of a phase-
sensing interferometer is limited by 8P, which is No '/

for a conventional interferometer using a linear coupler
as an input partition device. Equations (5) and (6) are
referred to as the standard quantum limit of the number-
partition noise and that of the interferometric phase sen-
sitivity. Note that they satisfy the minimum uncertainty
relationship

6N by =1. (7)

We now proceed to the heart of the nonlinear inter-
ferometer, a nonlinear coupler CC that is described by
the interaction Hamiltonian [6]

H/=bgN~Ng =Ay(lV /4 —S. ) .

where p =gr. The field 8 undergoes a phase shift pro-
portional to the particle number of 8 and iice versa. This
is referred to as the mutual phase modulation of fer-
mions. At this stage, the quantum-mechanical correla-
tions are established between the two systems. Remark-
ably, the number-phase correlations prepared at this
stage can be used for the quantnm nondemolition mea-
surement of ferrnion numbers; this possibility, in our
opinion, merits further theoretical study. They are not
yet operational, however, for our present purpose. To see
how they can be converted into desirable correlations, we
again use the spin representation for two fermion sys-
tems.

This can be realized through a Coulomb interaction be-
tween charged particles such as electrons. We will refer
to the device expressed by Eq. (8) as a Coulomb coupler.
The unitary transformations generated by the interaction
are given by

a/, a/, exp( —ipNB), b/; =b/; exp( —ipN~),

The quadratic term S in Eq. (8) twists the noise dis-
tribution of a coherent spin state around the z axis, and
thus generates a squeezed spin state [7]. The unitary
transformation by the Coulomb coupler CC is given by

S =exp( —ipS: )Sexp(ipS, ) .

The magnitude of squeezing is characterized by parame-
ters [8]

a = —, No@, P = —, Nop

The uncertainty in a certain spin component in the y-z
plane is now reduced with increasing a but it is neither in
S-, which denotes the diAerence in number, nor in 5~,
which denotes the difference in phase [7].

To obtain suitably correlated fermions, the spin must
be rotated about the x axis. This is accomplished at
the output linear coUpler L2 by choosing n=x and
= & jy p =

2
(+' tt/2 —arctana) (+ for lV, — for P)

which corresponds to the beam-splitter reflectivity

If we choose 0~, (AS ) is reduced and number-
correlated fermion states are generated:

SN=N, '" '(I+N,' '/4)'") (-'N )'"
(10)

where a» I and P«1. If we choose Qp, (AS~ ) is re-
duced and phase-correlated fermion states are generated:

8(t —lV
'' '(I+N' '/4)'") ( —')' 'lV

(11)
6N =No~ p.

The term Nop in Eqs. (10) and (11) arises from the
surliness of a one-axis squeezed spin state; it imposes the
limit [7] on the enhancement of the correlations. The
maximum enhancement of a factor ( —,

' ) ' No is

achieved at p =6' No where the last equalities in

Eqs. (10) and (11) hold. It is also noted that the
minimum uncertainty relationship in Eq. (7) is almost
satisfied for the correlated outputs.

Let us discuss the validity of the interaction Hamiltoni-
an (8). Consider two quasimonochromatic charged fer-
mion fields A(z, t) and B(z', t) along one-dimensional
paths. They can be either in vacuum or confined in

waveguides. If two paths are parallel, then the Coulomb
interaction energy between the two fields can be written

I as

, e'A'(z, t)A(z, t)B'(z', t)B(z', t)H(. = dz dz'
4~ [( + ')'+d']'"

where d denotes the distance between the paths, t. the dielectric constant, and e the electron charge. The interaction
length is chosen to be identical with the quantization length L to correlate the entire fields. The +- signs in the denomi-

1853



VOLUME 67, NUMBER 14 PHYSICAL REVIEW LETTERS 30 SEPTEMBER 1991

nator correspond to copropagating and counterpropagat-
ing schemes, where the coordinates z and z' are taken in

the opposite directions for the latter case. H~ consists of
Hl and the residual terms. HI is dominant for d )L; the
coefficient g approaches e /4+ed as d/L increases. The
coeScient itself can be enhanced by decreasing d, while

Hl becomes less dominant as d/L decreases. The coun-
terpropagating scheme is useful to suppress the residual
terms.

In a mesoscopic electron interferometer fabricated with
solid waveguides, the Coulomb coupling can be enhanced
by placing the two electron waveguides very close to each
other, while avoiding linear coupling by separating them
with an oxide insulator. This will be a promising struc-
ture for correlated fermion generators and sub-quantum-
limit phase-sensing interferometers.

Although we have mainly discussed charged fermions,
the principle is also applicable to other quanta or parti-
cles if the nonlinear interaction in the form of Eq. (8) is

valid. The Coulomb interaction can be used for charged
particles such as ions. For neUtral particles such as neu-
trons or atoms, such nonlinear interaction is yet to be
found. For photons, the interaction is known as the opti-
cal Kerr effect [6].

We have shown that a nonlinear Mach-Zehnder inter-
ferometer with a Coulomb coupler acts as a number-
correlated or phase-correlated fermion generator. The
number-correlated fermion generator can suppress the
partition noise in an ultrasmall electric current and may
therefore find important applications in single-electron
electronics. It is possible to surpass the standard quan-
tum limit in phase sensitivity up to a factor of ( —, ) '~ No~

if we replace the input linear coupler of a conventional
Mach-Zehnder interferometer with the phase-correlat-
ed fermion generator presented here. Although the en-
hancement factor does not reach the limit (No/4) '~

exemplified by Yurke [3], further improvement can be
expected if we use a more sophisticated nonlinear interac-
tion such as two-axis twisting [9].
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