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Target Dependence of Angular Distributions for Near-Threshold (e,2e) Processes
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Distorted-wave calculations of the triply differential cross sections for electron-impact ionization of H
and He targets are presented for final-state electrons sharing 4-eV excess energy and leaving in opposite
directions. The experimentally observed target dependence of the angular distributions is shown to stem
essentially from short-range effects on the s-wave phase shifts of both incident and final-state continuum

electrons.
PACS numbers: 34.80.Dp

Electron-impact-ionization processes are of theoretical
importance as a means of understanding the fundamental
problem of three or more particles interacting via Cou-
lomb forces. For final states having two free electrons,
i.e., (e,2e) processes, the prediction of triply differential
cross sections provides a most severe test of theoretical
understanding [1,2]. Recent low-energy (e,2e) experi-
ments [3-5] for various targets have shown the triply
differential cross sections to be highly dependent on the
target even though at asymptotic separations the long-
range fields in the final state are target independent.
While the form of the triply differential cross section is
known [6], numerical calculations are required to deduce
the effect of a particular target on the (e,2e) process.
However, even higher-order or distorted-wave theoretical
calculations [7-9], some of which [8] incorporate the
proper asymptotic boundary conditions [10], have been
carried out only for electron-impact energies well above
threshold. While the Wannier theory [11-14] for the
threshold energy dependence has been analyzed for all
contributing partial waves [15-17], numerical estimates
of their relative importance, which are essential for
describing the triply differential cross sections, have not
heretofore been made. We report here theoretical calcu-
lations of triply differential cross sections for electron-
impact ionization of H and of He which do estimate the
magnitude of each partial-wave contribution and provide
an explanation of the origin of the target effects recently
observed experimentally [3,4].

The key features of our theoretical approach may be
stated simply. We employ distorted waves to describe
both initial and final states. We also restrict our con-
sideration to final states for which the two electrons share
4 eV of kinetic energy and in which the angle between
their momenta, 6,5, is 7. Experimental data are available
[3,4] on the triply differential cross sections for such final
states as a function of the angle 6, which one of the
final-state electrons makes with the incident electron
beam. We approximate the final-state electron-electron
interaction by a variationally determined screening poten-
tial [18-20]. In what follows we expand upon our theo-
retical approach, compare our predictions with available
experimental measurements, and discuss the origins of
the target effects observed experimentally.

For infinite nuclear mass, the differential cross section

for electron-impact ionization [8(a)] becomes (in a.u.)
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In Eq. (1), k is the magnitude of the momentum of the
incident electron, k; and k; are the momenta of the two
continuum electrons in the final state, and E; and Ey are
the energies of the initial and final states. The perturba-
tion V is the difference between the exact Hamiltonian
and the approximate Hamiltonian used to construct o,
the distorted wave used to describe approximately the ini-
tial state. In our calculations V is defined by
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where the first term on the right-hand side of Eq. (2) is
the Coulomb interaction between the incident electron
and the N target electrons and the second term is a
Hartree-Fock (HF) approximation to this interaction
which we use in constructing ®;. (More specifically, the
radial wave functions describing the incident electron for
each partial-wave contribution to ®;% are calculated in
the appropriate term-dependent HF potential.) Omitted
in Eq. (2) are corrections to our description of the target
by hydrogenic wave functions in the case of H and by
ground-state HF wave functions in the case of He. Such
corrections stem from interactions between the incident
electron and the target electrons (e.g., polarization ef-
fects) as well as, in the case of He, electron correlations
among the target electrons themselves. We emphasize
that our inclusion of V7! in the description of the initial
state is an improvement upon the typical description of
the incident electron by a plane wave. In particular, it is
needed to describe theoretically the experimentally ob-
served target effects.

The final-state wave function ¥; in Eq. (1) should be,
in principle, the exact solution to the full Hamiltonian
satisfying the exact boundary conditions [10] for two con-
tinuum electrons moving in the Coulomb field of the ion-
ized target. We have expanded our final-state wave func-
tion in independent-electron states for the two continuum
electrons and have coupled their orbital and spin angular
momenta to partial waves characterized by L and S. For
H, L and S are the total orbital and spin angular momen-
ta of the system and are thus eigenstates of the collision.
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For He, S must be coupled to the spin of the target elec-
tron to form the system’s spin, which equals . Thus, in
He, the target electron couples singlet and triplet states of
the continuum-electron pair. However, we have ignored
such interchannel coupling in the case of He and treat the
channels designated by L and S as uncoupled.

The major approximation to ¥, in our calculations is
our replacement of the exact Coulomb interaction be-
tween the two continuum electrons by a variationally
determined screening potential [18 20]. For the config-
uration considered here in which kl = —kz, the effective
charges A; and A, are determined by the condition
[18-20]

Zr—A  Zr—A Zr 1
ki k> ki+ky’
where Z7 is the net asymptotic charge of the ionized tar-

(3)

get. In our calculations we satisfy Eq. (3) using the fol-
lowing screening charges [20]:
k'2
A=—"—— (i=1,2). 4)
(k1 +ky)?

The exact Coulomb interaction in our calculations is re-
placed by the sum of the following screening potentials
(i=1,2):

V,~(k|,k2)=A,-yo(r) N (5)

where yo(r) is chosen to have the properties yo— 0 as
r—0and yo— 1/r as r— oo,

The screening potentials V| and V, in Eq. (5) are in-
cluded in the equations we use to calculate the radial
wave functions for the two final-state continuum electrons
for each pair of orbital angular momenta (11,1,) and each
partial wave LS, where I, ®l,=L, and + & +=S. In H,
each of the continuum electrons sees only the Coulomb
field of the proton and the appropriate screening potential
V:. In He, each of the continuum electrons experiences
an LS-dependent HF-type interaction with the residual
He* ion plus the appropriate screening potential ¥;. For
the asymptotic final-state configuration considered here in
which t; =k, £, =k,, and r/ry=k,/k, the screening po-
tentials V; in Eq. (5) introduce a phase which differs

|

d’c

dE\dQ,dQ, 4k2
In Eq. (6), the symbol [x]=2x+1, E,=k?/2, dQ; is the
solid angle element for the momentum k;, L and S are
the orbital and spin angular momenta of the coupled pair
of final-state continuum electrons, P, is a Legendre
polynominal, and A4 (LS) is the dynamical scattering am-
plitude for the LS partial wave.

Further details of the derivation of Eq. (6), in particu-
lar details concerning the calculation of the amplitudes
A(LS), will be presented elsewhere [21]. We note, how-
ever, that since 0, =xr, A(LS) is nonzero only when the
parity of the final-state continuum-electron pair equals
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FIG. 1. Relative triply differential cross sections [cf. Eq. (7)]

for @1,=rmand T ki=1+k3=2¢V for (a) H and (b) He targets.
Solid (dashed) curves: Present results including (not including)
the effective screening potential [cf. Eq. (5)]. Open circles: Ex-
perimental results of Schlemmer et al. [4]. Solid triangles: Ex-
perimental results of Selles, Huetz, and Mazeau [3].

from the correct asymptotic phase [10] only by terms
which are independent of r| and r».

Using the initial- and final-state wave functions de-
scribed above in Eq. (1), summing over all final-state
magnetic quantum numbers, averaging over all initial-
state magnetic quantum numbers, and integrating over
the kinetic energy of one of the final-state continuum
electrons [in order to remove the § function in Eq. (1)],
one obtains the following expression for the triply dif-
ferential cross section [21]:

(6)

oooJ

(—1)*. In addition, for the equal-energy-sharing case, in
which k| =k,, A(LS) is nonzero only when the parity of
the final-state electron pair equals (—1)S. Hence, for
the equal-energy-sharing case, only the 'S¢ 3P°, 'De,
3F°,... partial waves LS of the final-state electron pair
contribute [16,17]. Since in Eq. (6) each of the ampli-
tudes in the product 4(LS)A*(L'S) must have the same
spin S, and since the 3j symbol is nonzero only if
(—1)E+E*% s even, we conclude that for the case of
k1 =k; only even values of A contribute. Thus the angu-
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lar distribution is symmetric about 6,=x/2. When
k#=k,, the 3S¢, 'P°, 3D¢, 'F°, ... partial waves may also
contribute and hence terms with odd values of A occur,
leading to a loss of symmetry about 8, =n/2.

Our results for the equal-energy-sharing case, ¥ k7
=1k3=2 eV, are shown in Fig. 1 for both H and He
targets. Since the experimental data are relative, we plot
the relative triply differential cross sections

4r d3c

49 =1+ P, (k; k), 7
o dE\dQ,dQ, Agoﬂl (ki k) 0

where o and B, are defined by comparison of Eq. (7) with
Eq. (6). The relative experimental data were fitted by
our results using Eq. (7) and a standard least-squares
procedure.

In agreement with the experimental data shown, our
triply differential cross section for H has a minimum at
0, =nr/2 while that for He has a local maximum at this
angle. Two theoretical results are shown for each target:
those with and those without inclusion of the final-state
electron-electron screening potential defined in Eq. (5).
While inclusion of this screening potential has a negligi-
ble effect on the calculations for H, in the case of He it
improves agreement with experiment significantly.

The key features of the triply differential cross sections
for H and for He may be understood from examination of
our calculated amplitudes in Table I. In this table we
have given the relative magnitudes and phases of the am-
plitudes for the first six partial waves LS of the final-state
pair of continuum-energy electrons. While the absolute
magnitudes of these amplitudes are quite different for H
and for He, the relative magnitudes of these amplitudes,
which determine the angular distribution, are quite simi-
lar. As was found empirically [4], the partial waves for
L > 3 are not important: In our calculations they are an
order of magnitude smaller than those for L =<3. Note
also that the triplet amplitudes for L=1 and 3 are com-
parable in magnitude to the singlet amplitudes for L =0
and 2. They thus cannot be neglected, as was done in a
recent calculation for helium [22].

TABLE 1. Relative amplitude and phase for the electron-
impact ionization scattering amplitudes 4(LS) for H and for

He targets for final-state electron kinetic energies 3 k¢
=tki=2eV.
Relative amplitude arg A(LS)
Partial wave lA@SH|/|AC'S)]| (rad)
WHp = H He H He

'se 1.0000 * 1.0000 * 4.447 6.067
3pe 0.4342 0.4275 2.711 2.947
'D¢ 0.4760 0.5276 3.992 4.267
3Fe 0.3259 0.2183 3.090 3.017
1G* 0.0463 0.0376 3.217 3.220
3H 0.0345 0.0150 2.793 2.482

aFor H, |4('S)| =0.3229; for He, |4('S°)| =0.2193.

The major difference between H and He in our calcula-
tions is between the arguments of the 'S partial-wave
amplitudes, which differ by more than 1.6 rad. This
difference affects the triply differential cross sections in
Eq. (6) primarily via the interference terms between the
L=0 and 2 partial waves which contribute to the
coefficient of the A =2 Legendre polynominal. These in-
terference terms in H and in He have phases which differ
by more than 1.3 rad. We have tested whether the sum
A('S)A*('D)+A('D*) A*('S¢) is responsible for the
different observed angular distributions in H and in He
by artificially replacing the s-wave partial-wave phase
shifts of the incident electron as well the two final-state
continuum electrons in the calculation of the 4('S¢) am-
plitude for He by the corresponding calculated s-wave
phase shifts used in our H calculation. This numerical
experiment results in the calculated He triply differential
cross section having an angular distribution similar to
that for H. These independent-electron s-wave phase
shifts are affected most by the short-range interactions
which produce the target dependence observed experi-
mentally [4].

In Fig. 2 we present our relative triply differential
cross-section results for the unequal-energy-sharing case,
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FIG. 2. Relative triply differential cross sections [cf. Eq. (7)]
for @12=n, 1 kf=3.5€V, and +k$=0.5 eV for (a) H and (b)
He targets. Solid curves: Present results including the effective
electron-electron screening potential [cf. Eq. (5)]. Open circles:
Experimental results of Schlemmer et al. [4].
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L ki=3.5¢eVand §k%=0.5¢eV, for both H and He tar-
gets. The experimental data [4] shown were once again
fitted by our results using a least-squares procedure. The
shapes of the angular distributions are very similar to
those in Fig. 1, except now there is no symmetry about
6,=r/2. The triply differential cross sections are largest
for 6, =0, i.e., when the higher-energy electron is ejected
in the direction of the incident beam. For the case of H,
our calculations show a minimum in the neighborhood of
75° while the experimental results show a minimum close
to 90°. Otherwise, agreement between theory and experi-
ment is quite reasonable. For the case of He, agreement
of theory and experiment is excellent. A detailed discus-
sion of the scattering amplitudes 4 (LS) for the unequal-
energy-sharing case will be presented elsewhere [21].
Suffice it to say here that for the partial waves having
even values of L + S, the magnitudes and phases are simi-
lar to those given in Table I for the equal-energy case. In
contrast, for the partial waves having odd values of L +S,
the magnitudes for L < 3 are much smaller than those for
the same L having even values of L +.S, while for L > 3,
the reverse is generally true.

In conclusion, we have presented distorted-wave calcu-
lations of the triply differential cross sections for elec-
tron-impact ionization of H and He targets for the final-
state configuration in which 8, =z and the continuum-
electron pair share 4-eV excess final-state energy. Our
results represent the first theoretical analysis of the target
effects observed experimentally in the near-threshold en-
ergy region [3-5]. These effects have been shown to stem
primarily from differences in the interference of 'S¢ and
D¢ partial-wave amplitudes of the final-state electron
pair for the H and He targets. These differences in turn
stem largely from short-range effects on the s-wave phase
shifts of both the incident and the final-state continuum
electrons in the two cases. A more detailed presentation
of the present results for H and He targets as well as a
similar analysis for Ne, Ar, and Kr targets will be
presented elsewhere [21].

This work was supported in part by National Science
Foundation Grant No. PHY-8908605.

Note added.— After submitting this paper, we learned
that Brauner et al. [23] have extended their calculations
for (e,2e) processes in H to the threshold energy region.
For 6,>=n, their angular distribution results and ours
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agree, as discussed elsewhere [21].
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