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Stringy Domain Walls and Target-Space Modular Invariance
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Based on the target-space modular invariance of the nonperturbative superpotential of the four-
dimensional IV= l supersymmetric string vacua, we find topologically stable, stringy domain walls of
nontrivial compactification modulus field configurations. They are supersymmetric solutions, thus sa-
turating the Bogomolnyi bound. Their physical implications are discussed.
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Topological defects are known to be present in phase
transitions triggered by spontaneously broken symmetries
of a given theory. They can have very important physical
implications, especially for cosmological consequences of
the theory. It is thus interesting to explore the existence
of these configurations in four-dimensional string vacua.
Recently, cosmic string solutions were found in perturba-
tive string theory [1]. We will present domain-wall solu-
tions from nonperturbative potentials in four-dimensional
string vacua [2].

In (2,2) and (0,2) superstring vacua in four dimensions
with %=1 space-time supersymmetry there generically
exist two types of moduli fields: the space-time dilaton
and axion field 5 and the compactification dilaton and ax-
ion field T, which corresponds to the internal size of the
compactified space [3]. The 5 and T fields have no po-
tential at the string tree level as well as to all orders in

string perturbation [4]. On the other hand, it is known
that nonperturbative stringy effects like gaugino conden-
sations [5] and axionic string instantons [6] give rise to
nonperturbative superpotentials.

If one assumes that generalized target-space duality is
an exact symmetry of string theory, the general form of
the four-dimensional eAective supergravity Lagrangian is

required to be modular invariant [7,8]. The generalized
target-space duality is characterized by the noncompact
discrete group PSL(2,Z) =SL(2,Z)/Z2 specified by the
linear fractional transformations T (aT —ib)/(icT
+d) with a, b, c,d C Z and ad —bc=1. The fact that
this is an exact symmetry even at the level of nonpertur-
bative eAects is supported by the genus-one threshold cal-
culations [9,10] which in turn specify the form of the
gaugino condensate [11—14]. In this Letter we shall
therefore study stringy domain walls of %=1 supersym-
metric four-dimensional superstring vacua by taking into
account the modular-invariant superpotential of the T
modulus field.

In fact, the physics of moduli fields is an intriguing

generalization of the well-known axion physics [15] intro-
duced to solve the strong CP problem in QCD. Below a
scale f„ the U(1) Peccei-Quinn symmetry is spontane-
ously broken and it is realized nonlinearly through a
pseudo Goldstone boson, the invisible axion B. The low-

energy eAective Lagrangian of the invisible axion is de-
scribed by

2

(yH) + F' Fu" + HF' Fu" (1)
2 4 2 ~' 32~2

The nonlinearly realized Peccei-Quinn U(1) symmetry,
&+a, where a=const, is explicitly broken due to

the nonperturbative QCD eA'ects through the axial anom-
aly r)u Ju5 = (NI/32tr )F„',F"". Integrating out the in-
stanton eAects by a dilute instanton approximation
[16,17] generates an effective potential proportional to 1—cosN with degenerate minima at 8 =2trk/NI, where
k =0, I, . . . , NI —1, thus breaking the original U(1)
Peccei-Quinn symmetry down to a discrete subgroup
ZtvI C U(1). Note that, within the dilute instanton ap-
proximation, the form of nonperturbatively generated ax-
ion potential is completely determined by the invariance
under the residual discrete subgroup Z/v . It is well
known that these potentials lead to domain-wall solutions
between adjacent vacua [181. NI domain walls meet at
the axionic string.

In our case, the modulus field T possesses a nonlinearly
realized noncompact symmetry SU(1,1)/U(1) = SL(2,
R)/U(1) to all orders in the sigma model perturbation.
The real and imaginary parts of the modulus field T are
nothing but the Goldstone bosons associated with spon-
taneously broken dilatation and axial symmetries, which
are generalizations of the Peccei-Quinn symmetry in the
invisible-axion physics. In a completely analogous way
the world-sheet instanton eAects [19] or space-time ax-
ionic instanton eA'ects [6] break the above nonlinearly
realized global symmetry to a discrete subgroup of it,
PSL(2,Z). Therefore, the superpotential should be a
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holomorphic function of T transforming covariantly un-

der the above discrete subgroup. Indeed, it is known that
the modular invariance puts strong constraints on the
dynamical supersymmetry breaking and the stability of
the vacua [8].

As an instructive and illuminating example we first
consider a global supersymmetric theory by turning oA'

gravity. The eAective Lagrangian reads

V—= G 'li), W(T)l'=G "la,I'(g)e) (T) I' (3)

has a discrete set of degenerate minima, and thus there is

a stable domain-wall solution (as suggested in [11])[22],
i.e., in this case the homotopy group Ho(JR) is nontrivial.
The term ~BTj(T)~ has two isolated zeros at T=l and
T=p=e' i in the fundamental domain 2) for T [20].
Other isolated degenerate minima might as well arise
when ~r) &(j )~ =0.

We embed the domain wall in the (x,y) plane, which is

thus perpendicular to the z direction. Then, the mass per
unit area of the domain wall is

p= = dz[GTTI&:TI'+GTTlr)TW(»I'] . (4)
dx dy

We now look for static, spatially nontrivial field config-
urations that minimize the mass per unit area in Eq. (2).
We can rewrite Eq. (4) as [23]

„d G -la. T —"G"a-,W(T)l'

+2Re(e ' AW), (5)

where AW—:W(T(z =~)) —W(T(z = —~)). The arbi-
trary phase 0 has to be chosen such that e' =AW/~AW~,
thus maximizing the cross term in Eq. (5). Then, we find

p) K=—2~AW~, where K denotes the kink number. Since
8TW is analytic in T, the line integral over T is path in
dependent as for a conservative force. The minimum is

obtained only if the Bogomolnyi bound

6, T(z) =G e' d W(T(z))—
is saturated. In this case

B,W(T(z)) =G e' ~BTW(T(z))l

(6)

which implies that the phase of 8. W does not change with

L= d Od OK(T, T)+„d OW(T)+ d OW(T)

=G~TiV Ti + G ir)T W(T) l (2)

Here, GTT= BT&T—K(T, T) is the positive-definite metric
on the complex modulus space and 8 is the superpoten-
tial, which has to be a modular-invariant (weight zero)
form of PSL(2, Z) defined over the fundamental domain
2) of the T field. The most general form of the superpo-
tential is a rational polynomial P(j (T)) of the modular-
invariant function j (T) [20].

Since the symmetry group is a discrete group [21], it is

natural to expect that the semi-positive-definite potential

z. Thus, the supersymmetric domain wall is a mapping
from the z axis [—~,~] to a straight line connecting
two degenerate vacua in the 8' plane. The domain wall
is stabilized by the topological kink number K=+ 2
x~AW~. We would like to emphasize that this result is

general; it applies to any globally supersymmetric theory
with disconnected degenerate minima that preserve su-

persymmetry.
The above observation is neatly described by using the

supersymmetry transformations of the moduli superfields.
The moduli field Lagrangian possesses an enhanced N =2
space-time supersymmetry [24]. The nonrenormalization
theorem of N=2 supersymmetry in turn guarantees no
quantum correction to the mass density of the stringy
domain walls [25]. This can be seen as follows. Denoting
the "modulino" as g, supersymmetry charges are

Q, = (y"g),V„T+g,G 8T W(T),

Q. =(gy~).V„T+g.G "a,w(7.) .

(7)

p T-K= —,
' dzF~/Q„Q, /e~ )0. (8)

Here, K denotes the kink number we derived in Eq. (5).
Thus, the Bogomolnyi bound is achieved for S,g —=e. Qg
=0. It is identical to Eq. (6) in which 0 is identified with
the relative phase between e+ and e —.

We shall now illustrate the above points with the expli-
cit choice for the superpotential W(T) =(a') j (T),
with e' being the string tension. As already discussed be-
fore, in the fundamental domain 2) the potential has two
isolated degenerate minima at T= 1 and T=p—=e' . At
these fixed points, j (T=p) =0 and j (T= I ) =1728.
Therefore, the mass per unit area is p =2x 1728(a')
Other cases can be worked out analogously and will be
presented elsewhere [26].

Naive application of Eq. (5) implies that the domain-
wall solution between the minima that are connected by
the PSL(2, Z) transformations has zero energy stored
since 8' has the same value at those points. However,
one can show that in the fundamental domain 23 there
are always at least two degenerate minima with diA'erent

values of the superpotential, and thus the energy density
of the domain wall that interpolates between these two
minima is nonzero. The energy density of the domain
walls interpolating between the minima connected by the
PSL(2,Z) transformations are thus in turn determined by
taking the path through all the minima in between. This
adjusts the constant phase 0 between the adjacent mini-
ma to maximize the cross term in Eq. (5). For example,

The anticommutator of supercurrents contains the Ham-
iltonian density and a total derivative, central charge
term. The latter is nothing but the aforementioned kink
number. We now introduce constant, chiral spinors e~
of unit norm, e e . e+ = 1. Then, in the rest frame of
domain wall, we find
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for W(T) =(a') ij (T) the energy density stored in the
domain wall that interpolates between T =e' and
T =e "i is p =2 & 2 x 1728(a')

We shall now study the case with gravity restored. For
a nonvanishing superpotential, the N =1 supergravity ac-
tion is described by a function

G(T, T) =K(T, T)+InW(T)+InW(T), (9)

which should be modular invariant. Then, the scalar La-
grangian reads

e 'L = —%+GTTVpTV" T+e [G tGTt —3]

Since K= —31n(T+T) at tree level, the superpotential
should transform as a weight —3 modular function under
modular transformations [7,8]. The most general choice,
nonsingular everywhere in the fundamental domain 2), is

W„, „(T)=H„, „(T)/q(T)',

H„, „=[j(T)—1728]

xj" (T)P(j(T)), m, n =IR+ .

Here, ri(T) is the Dedekind eta function, a modular form
of weight —, , and P(j (T)) is an arbitrary polynomial of
j (T). The potential is of the following form:

V„,,„(T,T) = 3lHI'
(T+T)' ~

"
where G2 = —4+8Tg/g —2'/(T+ T). In general the sca-
lar potential (12) has an anti-de Sitter minimum with

broken supersymmetry [8]. However, one can see that
for m ~ 2, n~ 2, and P(j) =1, the potential is semi-

positive definite with the two isolated minima at T=1
and T =p with unbroken local supersymmetry just like in

the global supersymmetric case [27].
We now minimize the domain-wall mass density. By

the planar symmetry, the most general static ansatz for
the metric [28] is

T+ T dTH 3

3 0 +2.'

ds'=A(tz t)( dr '+dz')—+B(tzt)(dx'+dy')

in which the domain wall is oriented parallel to the (x,y)
plane. Using the supersymmetry transformation laws

6y„,= [V„(ro) ——,
' i Im(GTV„T)]e, + —, (a„e),e

6g = (cruz), V„T—e I G GTe
(13)

with commuting, covariantly constant, chiral spinors e~,
the Arnowitt-Deser-Misner mass density p can be ex-
pressed as [29]

p+K= dz Jg[g~By '8y + —, GTTSg 8g] ~0. (14)

The i,j indices are for spatial directions. The minimum
of the Bogomolnyi bound is achieved if Eq. (14) vanishes.
Again, the stringy domain wall is stabilized by the topo-
logical kink number.

Unfortunately, the nice holomorphic structure of the
scalar potential is lost. In other words, there is now a
holomorphic anomaly in the scalar potential due to the
supergravity coupling. This implies that the path con-
necting two degenerate vacua in superpotential space is
not a straight line. In fact, one can understand the
motion as a geodesic path in a nontrivial Kahler metric,
and thus in G(T, T). One can show (numerically) that in

our example the path along the circle T=exp[iO(z)],
with 0=(0,x/6), i.e., the self-dual line of T 1/T modu-
lar transformation, is the geodesic path connecting be-
tween T= 1 and T =p in the scalar potential space.

2

(12)

Thus, we have again established the existence of stable
domain walls. The superpotential is quite complicated,
however, and we were not able to find an analytic solution
of the domain walls. We will present the numerical solu-
tion in our forthcoming paper [26].

It is interesting to note that stringy cosmic strings [1]
can be viewed as boundaries of our domain walls. Be-
cause the domain-wall number is two, the intersection of
two such domain walls is precisely the line of stringy
cosmic strings. On the other hand, such stable domain
walls are disastrous from the cosmological point of view.
One possible solution to this problem is that after super-
symmetry breaking, the degeneracy of the two minima is
lifted. In that case, the domain wall becomes unstable via
the false vacuum decay [30].

In this Letter, we examined the stringy domain walls
that appear generically for modular-invariant, four-
dimensional N =1 supersymmetric string vacua. Since
the solution is supersymmetric, there are four dimen-
sional chiral fermionic zero modes on the domain wall.
These "chiral" fermionic zero modes imply that the
domain walls are superconducting. Still, the domain
walls remain anomaly-free [26]. Even though we have
restricted ourselves to the T modulus field, one can gen-
eralize the argument to the S modulus field by extending
the modular invariance to the S field as well [31]. This is

a stringy generalization of the weak-strong-coupling dual-
ity [6,32]. In this case the components of S couple to the
gauge fields like 1/g and 6 as in Eq. (I). For a U(1)
gauge field, and the domain-wall background for S, these
couplings can be interpreted as spatially varying eftective
dielectric constant and magnetic susceptibility (e=p
=ReS). Also the CP and P-violating backgr-ound (de-
pending on ImS) can induce Faraday rotation of chiral
waves such as circularly polarized photons. Details con-
taining the above issues will be reported in a separate
publication [26].
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