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We present discrete forms of the Painleve transcendental equations P[[i, P]v, and Pv that complement
the list of the already known P] and P[i. These, most likely integrable, nonautonomous mappings go
over to the usual Painleve equations in the continuous limit, while in the autonomous limit we recover
discrete systems that belong to the integrable family of Quispel et al. Finally, we show that the discrete
Painleve mappings satisfy the same reduction relations as the continuous Painleve transcendents, name-
ly, Pv [Ptii, Piv]

PACS numbers: 05.50.+q, 02.90.+p

Painleve transcendents occur frequently in physical
models. The Ising model is perhaps the best known

among them but these transcendents also appear in

several other statistical-mechanics models related to con-
formal field theory [1]. Another well-known application
domain of the Painleve equations is that of integrable
partial differential equations (PDE's) [2]. Reductions of
integrable PDE's (and sometimes also of nonintegrable
ones) often lead to one of these transcendental equations,
a fact that makes possible the formulation of special solu-
tions for the equation at hand. It is in these domains that
the first two "discrete" transcendents have made their ap-
pearance [3]. The aim of this paper is to derive the forms
of the next three discrete Painleve equations using the
new method of singularity confinement [4].

The (continuous) Painleve equations were discovered
at the beginning of the century by Painleve and Gambier
[5]. The method used for the derivation of these tran-
scendental equations is related to what came to be known
in the past decade as singularity analysis [6]. These
equations have the so-called Painleve property, i.e., their
solutions are meromorphic functions of the independent
variable, or, equivalently, their (movable) singularities
are just poles [7]. Their solutions were given only in

the past few years. Following the pioneering work of
Ablowitz and Segur [8], it was shown that the Painleve
equations can be linearized in terms of integro-dif-
ferential equations, using the inverse scattering transform
scheme. Recently the inverse monodromy (isomonodro-
my) method has been developed for the study of the Pain-
leve equations [9]. Another feature suggesting nice be-
havior is that the Painleve equations can be written in the
Hirota bilinear form [10].

The question of the existence of a discretized form of
the Painleve equations arose naturally, given the intense
activity around discrete systems. While mappings were
initially used as prototypes for the study of chaos, the re-
cent trends are towards the complementary direction,
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has also been obtained [13] in a way closely parallel to
the one used for PDE's, as a simi', arity reduction of the
discrete version of the modified Korteweg-de Vries equa-
tion.

The derivation of the discrete forms of Painleve equa-
tions has so far been fortuitous, because there was no
discrete analog of the singularity analysis method. Quite
recently a "singularity confinement" method [4] was pro-
posed relating the integrable character of discrete systems
to their singularity structure. We now have, for map-
pings, the equivalent of the Ablowitz-Ram ani-Segur
(ARS) conjecture [14] for partial and ordinary differ-
ential equations (ODE's).

The implementation of the singularity confinement
method is quite simple. Given a mapping, one must first
find all possible ways a singularity can emerge (this step
follows closely the first step of the algorithm for ODE's
where one looks for all possible leading singular behav-
iors). The system is said to have passed the test (and is
thus a candidate for integrability) if this divergence does
not propagate in (discrete) time, i.e. , that it remains
confined. The second step is therefore to find how far it

that of integrability. Numerous studies have been pub-
lished concerning the construction of integrable mappings
and lattices (higher-dimensional mappings) [11]. Several
mappings that naturally appear in physical applications
have turned out to be discrete analogs of the Painleve
equations. For example, the computation of a certain
partition function in a model of 2D quantum gravity led
to the discrete form d P~ of P~ -[3]:

x.+ ~+x.—~+x„=(an+&)/x„+c.
Its solution using the isomonodromy approach has been
given in [12].

A discrete form d-P~~ of Pit,
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has to propagate before it has a chance to leave room for
a regular behavior (this is somewhat reminiscent of the
"search for resonances" in the ARS algorithm); and
finally one has to verify that indeed the singularity does
not propagate beyond that (this last step is the equivalent
of the "resonance condition").

We can illustrate this procedure in the autonomous
version of d-Pii [a =0, c =0 in (2)]:

xn+ I+x —n I =Iixnl(I xn ) . (3)

and when we extract from Eq. (4) the part involving
derivatives we obtain a continuous limit (8 0) of the
form

fi(x)x"= x'+g(x) .xf3(x) —f2(x)
(6)

So if we are aiming at a specific Painleve equation, the
first thing to do is to choose f2,f3 in such a way as to getf3( )/x[ fx( i) x—f2(x) l to coincide with the factor multi-
plying x' in that equation.

In the case of Pi~i we have x"=x' /x+g(x). First of
all, we should point out that the continuous form of Piii
we are going to work with is

Let us assume the initial conditions are such that
x„—

~

= 1 and x„—2 is finite. Then x„diverges and
x„+[= —1. The latter is still, in a sense, part of the
singularity: x„+~ is determined independently of other
values earlier than x„—] =1, and moreover it may be a
source of further problems as it is a zero of the denomina-
tor. The singularity, however, does not propagate any
further: The two sources of divergences cancel each other
and x„+2 is finite. In fact, we find x„+2=—x„—2. The
conjecture claims [4] that the fine cancellations necessary
for the confinement of the singularities are associated
with integrability.

Quispel, Roberts, and Thompson [15] have presented a
general family of autonomous integrable mappings of the
form

f (x, )II fi(x, )Z+f—(x„)=0,
where 2=x„—~+x„+~, II=x„—~x„+~, and the f; are
quartic polynomials. In [4] we have shown how to derive
the discrete equations d-Pi and d-Pii starting from auto-
nomous mappings of the Quispel family. The same
method can be used to derive the discrete forms of the
remaining equations.

Some insight in choosing the correct f; s is provided by
the fact that we wish to obtain equations that, in the con-
tinuous limit, go over to the Painleve equations. Intro-
ducing a lattice parameter 6 we have

X=2x+8 x"+0(6' ),
II =x +6 (xx"—x ' ) + (& ),

obtained from the usual one [7] through the transforma-
tion z e' that absorbs the w'/z term. This form agrees
with (6) if we simply take f2 =0. In that case, in
Quispel's approach, f~ and fi have one quadratic com-
mon factor and, assuming that this remains true when the
coefficients become n dependent, the mapping takes the
form

x(n)x„'+ g(n)x. +p(n)
x„'+p(n)x„+ y(n)

To fix the n-dependent coefficients we will study the
singularity behavior as described before. When one
solves for x„+] there are two possible sources of singulari-

ty for this mapping. Either x„ is a zero of the denomina-
tor x„+p(n)x„+y(n) or x„-~ becomes zero. In the first
case, the singularity sequence is the following: x„+]
diverges, x„+2 has a finite value x(n+ I )/x„, and x„+3
would in principle be proportional to I/x„+~ and thus
zero. This would lead to a new divergence. The only way
out is to ask that x„+2 also be a zero of the appropriate
denominator, so that x„+3 does not vanish. Expressing
x„+2 in terms of x„and taking into account that this
must be true for both zeros x„of x„+p(n)x„+ y(n), we

obtain P(n) = P(n +2)x(n+ I) /y(n +2) and y(n) =tr (n
+1)/y(n+2). Multiplying x„by an arbitrary function
of n does not change the form of Eq. (8) but only affects
the coefficients. This scaling freedom allows us to take a
constant value p for p(n), resulting in x(n+ I) =y(n
+2), y(n) = y(n+2). Thus the y's and tc's must be con-
stants within a given parity: y(even) = tc(odd) = y+,
y(odd ) = t~(even ) =y-.

In order to study the second kind of singularity, we
start with x„such that x„+~

vanishes [i.e., x (n)x„
+((n)x„+p(n) =0]. We find then that x„+q has a finite
value p(n+1)/y(n+1)x„and this would lead to a diver-

gent x„+3 unless the numerator also vanishes. Substitut-
ing the expression for x„+q and using the fact that again
this must be true for both zeros of rc(n)x„+g(n)x„
+p (n), we obtain

p(n) =g(n)p(n+ I )/g(n+2) =p (n+ I)/p(n+2) .

The solution to these equations is straightforward:
p(n) =pok, " and g(n) =go, ~k. ", where po, go ~ are con-
stants, the ~ sign being related to the parity of n. Note
that, in that case, there is no second kind of singularity at
all. Indeed x„+3 is not allowed to diverge even though
x„+~ =0. (This is reminiscent of the case of continuous
equations where, if a denominator appears, one must con-
sider the values of the dependent variable that makes this
denominator vanish to ascertain that this does not gen-
erate a singularity. )

In order to go to the continuous limit, we start with a
change of the mapping variable y„=k"~ x„. Moreover,
at the continuous limit the distinction between even and
odd must disappear. We thus write d-P f f f as

&2

w' = +e'(aw +b)+e =' cw +—
W

(7) ygn + go~ Vn +p0~
p'n ign+i „2 „t2 (9)
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3w&2 3

w = + +4zw +2(z —a)w+ —.2 2 b
2w 2

(io)

The continuum limit is obtained by letting the lattice pa-
rameter b go to zero, while y= —I/c8 and all the other
constants are of order unity: p = a/c, tuo = —b/c,
/II= —d/c. Simultaneously, one must take X= I+2p8,
leading to Eq. (7) with e' replaced by e~'. But p can be
absorbed by rescaling z and redefining a, b, c, and d; thus
we recover Pt~~.

In order to derive d-P~y we start from the continuous
P)y.

where eo=p —
yo and we have ignored the even-odd dis-

tinction.
For the continuous limit we start from (12) and take

an+b 2z, yo= —I/8, p= —4/8 +ri for 8 0, with

tu and g finite. The form (10) of Plv is obtained.
In order to obtain the discrete Py we start from a con-

tinuous form that is symmetric under the exchange
w 1

—w [this equation is related to the usual one [7]
through w w/(I —w)] and where we furthermore elim-
inate the first-derivative term through the transformation
z-e- [iO]:

Its derivative-dependent part suggests the following map-
ping:

1 1 1
w = ——+ w +a

2 w w —
1

+bw 1

w —
1

Xn+ IXn —
I +Xn(Xn+ I +Xn —

I )

x(n) x„'+e(n) x„'+((n)x„+p (n)
x„'+p(n)x„+ y(n)

Solving for x„+] we obtain two possible sources of diver-
gences: Either x„ is a zero of the denominator x„
+P(n)x„+y(n) or x„+x„-I vanishes. In the first case,
starting with x„, we find that x„+~ diverges, and x„+2 is
finite, with value x(n+ 1) —x„. This would lead to
x +3 x +2 and to a divergent x„+4, unless x„+2 is a
zero of x +P(n+2)x+y(n+2). Expressing x„+2 in

terms of x„, and demanding that the resulting equation
is identical to x„+p(n)x„+ y(n), we obtain p(n+ 2)
+P(n) = —2x(n+ I ) and

+ce=w(w —1)+de =w(w —1)(2w —1) . (13)

x(n)x„'+ e(n)x„'+ g(n)x„+p (n)
a(n)x„'+ p(n)x„+ y(n)

(i 4)

Two sources of singularities exist here also: Either the
denominator vanishes or the relation 2x„x„—] =x„+x„—[

holds. The first case is treated in a way similar to d-PI«
and d Plv. We fi-nd

x (n+ 1)+x„a(n+ 1)
a(n+ 1)(2x„—1)

Comparing the coefficient of Iv' with (6) we find that the
starting point must be a mapping of the following form:

(2Xn 1 )Xn + I Xn —
I Xn (Xn + I +Xn —I )

y(n+2)+P(n+2)x(n+ I)+x (n+ I) =y(n),
and then we demand that it is a zero of a(n+2)x
+P(n+ 2)x+ y(n+ 2).

For the second possible kind of potential singularity
x„+ I diverges unless R (x„)+x„ lx„vanishes, where
R(x) is the right-hand side of (14). Similarly, propaga-
ting backwards, we find that x„2 would diverge unless
R(x„—I)+x„-Ix„=0. We require that these two condi-
tions are equivalent subject to 2x„x„—~

=x„+x„—[. The
solution to these singularity confinement constraints is
then straightforward. Taking p =const we have g(n)
+g(n+1) = —4tu and thus g= —2tu+ g( —1)". Similar-
ly, e(n+ I ) —c(n) = y(n+ I ) —y(n)+2ri( —1)" and thus
e —

y =8 —ri( —1)" with 8 a constant. Moreover,
x =2y+ p+p( —1)"and finally a+2p+4y+p( —1)"=cr
with cr another constant. Putting p =p —a we find

(12) a=aors ", p=pok" (where we have not distinguished the
even-odd dependence of the constants). Thus we find d-
Py.

—,
' (o —

aors ")x„+{8+—,
'

(a+ aors "—2pok") jx„—2tux„+tu

which lead to 4y(n) P(n—) =4yo~ (a parity-dependent
constant).

For the second (potentially) singular behavior we as-
suine that x„+x„+I=0 and demand that, in fact, both
x„ I and x„+2 be finite. This leads to two quartic equa-
tions for x„. Asking that these two equations are identi-
cal implies p =const, g=(0( —1)", and e+ y=p(const),
while p must satisfy the equation p(n+3) p(n+2)—

P(n+ —1)+P(n) =0. The solution to the latter is
p(n) =an+b+c( —1)". Thus all the n-dependent func-
tions are fixed and d-Ply reads

Xn+ IXn —
I +Xn(Xn+ I +Xn —

I )
—(an+b)x„+ [eo ——, (an+b) ]x„+p

x,'+ (an+b)x„+ [yo+ —, (an+b) ]

(15)(2Xn 1)xn+IXn —
I Xn(Xn+I+Xn —I) =

1831

aors'"x„'+ (pot" —aors'")x„+ —, (o+ aors'" —2pok")

In order to obtain the continuous limit we take o = I/6, 8= —I/8 +y for 6' 0, with ao, po, tu finite. The term X"
goes over to e ' and, as in the case of Pt~t, the factor p can be absorbed by a scaling. We thus obtain Py as given in Eq.
(i 3).

One interesting feature of the Painleve equations is that they can be reduced to lower ones by a process of coalescence
[7]. In fact, starting from d-P«[Eq. (2)] one can get d-PI [Eq. (1)] by putting x =1+vX, a = —2Av, b = —4 —2Cv,
e=4+2Cv —28v, and letting v 0. In the same way we can get d-Pit starting from d-Ptt(. In fact it su5ces to take
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x„=1+vX„, ) =1 —v, P= —2, 1, =1 —av, gp= —2
+(b+2) v, pp= 1

—(b+2) v —cv, and we recover d
Ptt [Eq. (2)] at the limit v 0. P~y does not reduce to
Pttm but rather to P~~. The same is true for d-Ptv. We
take x„=1+vX„, @=I —v (I+8+An), P= —2+ v (8
+An), s= —3+(8+An)v, p =1 —3v —2cv, and we
recover tI-Pt~ [Eq. (2)] at the limit v 0, with a=2A
and b =2B —1. Just as Pv can be reduced to both P t t [
and P ty so call d Py. T-aking x„=X„/vk", ap v,
pp= v, p = I/v, 8= 1/v, tI = 1/v, o and p finite, we re-
cover d-P~tt in the limit v 0. On the other hand, to re-
cover 1 P~y, -we put x„=vX„and take ap =A/v,
pp =A/v +8/v, tT=A/v +28/v+C, p = v, ti = v, with
A, 8, C, 0, and p finite. Here A,

= I+av allows us to ob-
tain the linear behavior of P(n) in d Pty i-n the limit
v 0.

The results we presented here have amply demonstrat-
ed the power of the new integrability criterion for discrete
systems. It has made possible the systematic derivation
of new transcendents. Once their form is known, it will

be possible to identify them when they occur in physical
models. (However, one must keep in mind that transfor-
mations of the mapping variable may alter their apparent
forms. ) Although it is clear that the forms we have given
are discrete versions of the Painleve equations, having the
correct limit and coalescence properties, nothing can be
said about their uniqueness.

Several directions of research appear open at this point.
Finding the Lax pairs for the systems obtained here, Eqs.
(9), (12), (15), and solving the isomonodromy problem,
is one of the most interesting. Higher-order equations,
having the Painleve property, are appearing in the recent
literature in relation to physical models [3,16]. Although
their transcendental character has not yet been estab-
lished, their discretization to integrable mappings now

appears within reach of our new method.
The authors are grateful to V. Papageorgiou, A. Fokas,

and E. Brezin for stimulating discussions and/or corre-
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