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Do Integrable Mappings Have the Painleve Property?
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We present an integrability criterion for discrete-time systems that is the equivalent of the Painlevé
property for systems of a continuous variable. It is based on the observation that for integrable map-
pings the singularities that may appear are confined, i.e., they do not propagate indefinitely when one
iterates the mapping. Using this novel criterion we show that there exists a family of nonautonomous in-
tegrable mappings which includes the discrete Painlevé equations P), recently derived in a model of two-
dimensional quantum gravity, and Py, obtained as a similarity reduction of the integrable modified
Korteweg—-de Vries lattice. These systems possess Lax pairs, a well-known integrability feature.

PACS numbers: 05.50.+q, 02.90.+p

The study of discrete-time integrable systems is
currently the focus of an intense activity [1]. The sys-
tems considered are either lattices, i.e., partial difference
equations where both the spatial and time variables have
been discretized, or mappings, i.e., finite degree-of-
freedom systems in discrete time. Integrable lattices are
particularly interesting as their various continuous limits
generate entire hierarchies of integrable partial differ-
ential equations (PDE’s). Integrability for these systems
is often associated with the existence of a Lax representa-
tion, a Zakharov-Shabat linearization, but also deduced
from the existence of a sufficient number of integrals of
motion in involution [2]. The situation is reminiscent of
the status of nonlinear evolution equations in the 1970s.
More and more integrable systems were being construct-
ed, but whenever a new nonlinear PDE appeared in a
physical application its integrability could be surmised
only at the cost of lengthy numerical investigations. The
situation was dramatically modified with the advent of
the Painlevé criterion [3]. A study of the singularity
structure of the equation at hand allowed one, in most
cases, to make a safe prediction of its integrable (or not)
character. This development became possible only after
the production of a “critical mass” of integrable PDE’s
on which the conjecture relating integrability and singu-
larity structure could be tested. This is roughly what is
happening now with discrete-time systems. More and
more integrable lattices and mappings are appearing in
the literature [4] but no criterion for the integrability of a
new system existed until now. So there has been no way
to predict the integrability of mappings short of exhibit-
ing Lax pairs or a set of commuting integrals, i.e., prov-
ing the integrability. The present work gives a new cri-
terion for assessing the integrability of discrete-time sys-

tems. It is based on the study of the movable singulari-
ties of a mapping and so it is, in some way, the analog of
the Painlevé criterion for continuous-time systems.

In order to introduce our method let us study the in-
tegrable lattice of potential-Korteweg-de Vries type,
presented in [2,5], that we write here as
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The structure of the lattice associated with the evolution
equation (1) can be easily assessed in Fig. 1. Initial data
can be given on the staircase which joins the points
(i—1) and (i—2). Evolution can be understood as tak-
ing place towards increasing i’s. Now let us assume that
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FIG. 1. Structure of the lattice for the evolution equation
(1): The index j runs over the vertical lines while i labels the
slanted (dashed) lines. Initial data are given on the heavily
drawn line. The symbols 0, oo, and f (which stands for “finite
value™) indicate the location of the corresponding values on the
lattice.
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during the successive applications of (1) the value of x at
(i,j) becomes zero. This is not at all impossible and the
point where this occurs depends on the initial data, i.e.,
the singularity induced is movable. From (1) it is clear
that x diverges at both sites (i +1,j—1) and (i +1,;) and
that it vanishes again at (i +2,j—1). Now the crucial
question is what happens at the sites (i +3,/—2) and
(i +3,j—1). It turns out that, due to the precise form of
(1), there exists a fine cancellation leading to finite values
at both sites. In fact, for x/*{ we find just x;™'+1/
xi—1=1/xj*? and a similar expression for x;*3. Thus
the singularity is perfectly confined. This would not have
been true if the evolution did not have the form (1). In
fact, modifications of the relative coefficients of the vari-
ous terms in the lattice (that, presumably, destroy in-
tegrability) lead to singularities radiating out from the
site (i,/) all the way to infinity. The situation is reminis-
cent of the difference between the singularity structures
of integrable and nonintegrable continuous-time systems.
Integrable systems have the Painlevé property: Their
singularities are isolated and single valued; thus one can
make a loop around each of them and come back to the
starting point. In nonintegrable systems the singularities
condense to natural boundaries [6] that one cannot cross.
Thus we can see from this first example that integrability
in discrete-time systems is related to confined (movable)
singularities. A more stringent test to this hypothesis can
be obtained if one chooses the initial conditions so as to
have two adjacent zeros leading to three adjacent singu-
larities (see Fig. 2). The pattern of singularities is now
more complex but still after a second row of singularities
the divergences are canceled out.

Let us see how the notion of “singularity confinement”
works out in a completely solvable mapping: the discre-
tized anharmonic oscillator. In [7] Hirota has presented
the (integrable) mapping

Ixpar — 2%+ xn—11/82=—ax, — Bx2xn+1+x,-11/2
)

that corresponds to a discretization of a quartic oscillator.
Another way of looking at (2) is the following: As shown
recently by Yoshida [8], this mapping is the symplectic
integrator of order 2 for the quartic oscillator. Hirota
produced the complete solution of (2) in terms of elliptic
functions: x(z) =xecnlQ(z —1¢),x] where @ and « are
given by 1 —cn(60)/dn?(6Q) =ab%/2 and 2x*=x4Bs%/
[sn(60)/dn(6Q)]? and the time variable is discretized

=nd+1to. Now let us assume that for a given n x(n)
diverges. Using the addition formulas for the elliptic
cosine we can easily verify that x(n + 1) = +(2/86%)'"?
and also x(n+2)=—x(n—2). Thus x(n—1) has pre-
cisely the value that guarantees a divergence for x (n) and
x(n+1) has the value that compensates this divergence.
Moreover, the memory of the initial condition, that has
propagated up to x(n—2), survives past the singularity in
x(n+2).
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FIG. 2. Singularity pattern for initial data that lead to two
adjacent zeros for Eq. (1), with the same conventions as for Fig.
1.

Thus our conjecture concerning the integrability of
mappings can be stated in the following (intuitive) way:
The movable singularities of integrable mappings are
confined, i.e., they are canceled out after a finite number
of steps. Moreover, the memory of the initial condition is
not lost whenever a singularity is crossed. It goes without
saying that not all mappings will be covered by our con-
jecture: Strictly polynomial mappings (like the Hénon
map [9]) do not have movable singularities at finite dis-
tance. Moreover, one must be careful as to whether
singularities are possible, within a given discrete-time sys-
tem, without assuming divergent initial conditions. In the
latter case the singularity is not a movable one.

Going back to Hirota’s anharmonic oscillator we may
remark that (2) can be written as

Z”+|+Zn—|=2/12,,/(1+2,,2), (3)

with z, =(B86%/2)"?x, and u=1—aés%/2, ie., the well-
known McMillan mapping [10]. Expression (3) is just a
particular case of a more general mapping:

ax?+bx,+c

_— 4)
dx2+ex,+f

Xn+1FXp—1=—

As an application of our method we will deduce the con-
straints on the parameters a,b, . .. ,f for (4) to be inte-
grable solely from the study of its singularities. Two
different cases must be distinguished at the outset: either
d#0 (in which case we can take d=1) or d=0 (and we
take e =1 for the mapping to be able to diverge). In both
cases the variable x can be translated so that f=0. In
the first case the mapping has the form

ax2+bx,+c

x,(xp+e) )

Xn+1FXp—1=—

(provided the numerator and denominator do not have
common factors). Let us assume that x, becomes zero.
Iterating the mapping we find successively x, =0, x,+
=oo, x,+2=—e. For x,+3 to be finite we obtain the
condition e=a, which leads precisely to the only inte-
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grable form of (5). Similarly for d =0 we start from
Xn+1FXn—1=—ax,+b+c/x, 6)

and assume that x, =0 and we find that x,4+,=c. A
first condition for the nonpropagation of the singularity,
i.e., for x,+4 to be finite, is a(a?—1)=0. In the case
a=—1 we find a supplementary condition 5=0. Thus
this last case can be transformed to a=1 for the new
variable z,=(—1)"x, with c— —c. Again a=0 and
a =1 are the only known integrable cases.

The McMillan mapping belongs to a much more gen-
eral family of integrable mappings obtained by Quispel,
Roberts, and Thompson [11]:

~ S1Gan) = xp—1 f2(x4)

! C f20) = X1 f3(xn)

where the f; are quartic polynomials. Integrability here
is synonymous to the existence of a one-parameter family
of invariant curves F(x,,x,+;) =const. We will not dis-
cuss here whether this definition is, in general, equivalent
to the existence of Lax pairs and a Zakharov-Shabat
linearization. It suffices to say that in the case of the
Quispel mappings the biquadratic equation F(x,,x,+1)
=const can be parametrized in terms of elliptic functions
leading presumably to the full solution [12].

The examples presented above have shown clearly that
the new criterion can be applied efficiently as an integra-
bility detector for discrete-time systems. In fact, the cal-
culations necessary in order to control the singularity
confinement can be easily performed on a computer using
a program for algebraic manipulations. Still there exists
one more interesting application of our method that we
would like to present here. It concerns discrete Painlevé
equations. A discrete version of P has appeared in re-
cent works on two-dimensional quantum-gravity models
[131, while in [14] Nijhoff and one of us (V.P.) have ob-
tained a discrete version of Py from similarity reductions
of the integrable modified Korteweg-de Vries lattice
[2,15]. Both these nonautonomous difference equations
have Lax pairs and reduce to the usual P, and Py, re-
spectively, at the continuous-time limit. Let us start by
generalizing the McMillan mapping (5) to the nonauto-
nomous case (after taking a=e =1 by rescaling the vari-
ables):

™

x2+B(n)x,+C(n)

xn+l+xn—l x"(x"+l) . (8)
As in the autonomous case we assume that x, =0, which
leads to the following condition for singularity confine-
ment: C(n+1)—C(n—1)—Bn+1)+B(»n)=0. Simi-
larly starting from the second root of the denominator
x,=—1, we find Cn+1)—Cn—1)+Bn—1)—B(n)
=(0. Combining the two equations we obtain B(n+1)
—2B(n)+B(—1)=0 and B(n) =An+u. Substituting
back we obtain the following for C: C(n+1)—C(n
—1) =2, and thus C(n) =An/2+v. With these expres-

sions of B and C and with z, =2x,+1 we find

z,(an+p)+
Zavitzg =Ty ©)
1—2z;
which is precisely the discrete Py;.
Similarly one can start from a nonautonomous form of

6):
Xp+1Fxp—1=—x,+Bn)+Cn)/x,. (10)

A first condition for singularity confinement is B(n+1)
—B(n)=0. Thus B is constant. Once this is implement-
ed we find a second (and sufficient) condition:
Cn+3)—C(n+2)—Cn+1)+C(n)=0. The general
solution of this equation is C(n) =an+pg+y(—1)". We
can remark here that the last term of C(n) will disappear
at the continuous limit. Here again (for y =0 and B=b)
we obtain

Xn+1+x,—1+x,=b+(an+B)/x, , an

i.e., the discrete Py.

Let us now summarize our findings. A new criterion
for the detection of integrability of discrete-time systems
has been derived, based on the notion of singularity
confinement. This last feature is, for discretized systems,
the equivalent of the Painlevé property. Its implementa-
tion is perfectly algorithmic, once one has found al// the
possible ways in which the mapping can lead to diver-
gences (another resemblance to the Painlevé method).
The singularities considered are movable, i.e., initial-
condition dependent. It is essential that the memory of
the initial conditions survive past the singularity. The
treatment of nonautonomous and/or multidimensional
systems does not present particular difficulties. It would
be interesting, using this new criterion, to investigate the
existence of higher transcendental equations, i.e., the ana-
logs of Py to Py.

The authors are grateful to Th. Fokas for communicat-
ing to them his results on the discrete P prior to publica-
tion.
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