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Monte Carlo Mean-Field Theory

In a recent Letter, Netz and Berker [I] proposed a new
method combining mean-field theory and Monte Carlo
sampling and applied it very successfully to frustrated Is-
ing spin systems in two and three dimensions. The
method modified mean-field theory by introducing the
hard-spin condition and relied on stochastic sampling to
determine the local field acting on a given spin.
Specifically, for an Ising spin system with Hamiltonian
pH =Jg~;J~S;Sl, where the S; = ~ I at each lattice site i
and the sum is over nearest-neighbor spins, their equa-
tions are

(S;&=tanh(H;),

H; = —JQSJ, (2)

where Sj, j=1-6, are nearest-neighbor sites of i. The a' s
are functions of the magnetic field and coupling. Follow-
ing the expansion, the averages are factorized, with, e.g. ,

(S,S,S,) =(S,)(S,&(S,& (J~l ~l).
(4) Thus, the Netz and Berker method is an improved

mean-field theory [3] and does not require any Monte

with the nearest-neighbor field 0; constructed stochasti-
cally with Sj = ~ 1, the sign of Sj selected to be equal to
(S;)—r, where r is a random number in the interval
[—I, I]. As noted by Netz and Berker, conventional
mean-field equations would replace (2) by H;
= —Jg, (S,).

We make the following observations:
(I ) Equation (2) along with Eq. (I ) replaced by

(S;)=(tanh(H;)), where the average is taken with respect
to the canonical ensemble, are exact. This is readily de-
rived by explicitly tracing out the spin S; in the exact ex-
pression for (S;) followed by simple algebraic manipula-
tions. This is one of the Callen identities [2].

(2) Conventional mean-field theory results on replacing
(tan h (H; ) ) by tan h ((H;) ).

(3) The approach of Netz and Berker is equivalent to
an approximate evaluation of (tanh(H;)) with a factor-
ized statistical weight P[S[ =+; —. (I+(S;)S;). This is

equivalent to expanding tanh(H;) as a sum over all possi-
ble products of Sj, taking into account Sj =+1. Thus
for a triangular lattice with nearest-neighbor exchange
and a magnetic field,

6

tanhH; = an+ g a ~Sl+ g a2S~St,
j=1 j&l.

+ - +a6S)S2S3S4SsS

Carlo sampling. Indeed, we have been able to rederive
the results of Ref. [I], almost trivially, for the nearest-
neighbor antiferromagnetic Ising model on a triangular
lattice with three coupled equations for the sublattice
magnetizations. In practice, for a continuous spin model
with no translational symmetry, the Netz-Berker Monte
Carlo mean-field idea may be particularly useful.

(5) The improved mean-field theory is exact in one di-
mension in the absence of an external field. However, it
does not distinguish between a ferromagnet on a triangu-
lar lattice in two dimensions and on a simple cubic lattice
in three dimensions. The improved mean-field theory is
exact to O(I/d ) in a large-d expansion for a nearest-
neighbor Ising ferromagnet on a hypercubic lattice.

(6) For an Ising ferromagnet on a square lattice, the
improved mean-field theory yields J,. =0.3236 compared
with the standard mean-field prediction J, =0.25 and the
Onsager result J,. =0.4407. The spectacular agreement
of Netz and Berker [I] with conventional Monte Carlo
simulations suggests that the factorization approximation
is better for fully frustrated systems.
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