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Entropic Predictions for Cellular Networks
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Diverse cellular systems evolve to remarkably similar stationary states. We therefore have studied and
simulated a purely topological model. We use a maximum-entropy argument to predict that the average
number of I-sided cells adjacent to an n-sided cell, Ml(n), will be linear in n. One consequence is the
empirically observed linearity of the total number of edges of cells adjacent to an n-sided cell, known as
the Aboav-Weaire law. The prevailing justification of that law is shown to be incorrect, and thus the ap-
parently universal experimental slope of —5 remains unexplained.

PACS numbers: 87.10.+e

Soap bubbles, polycrystalline grain mosaics, and bio-
logical tissues are natural examples of random, space-
filling cellular networks. Despite length scales spanning
geology [1],metallurgy [2], and biology [3], cellular net-
works have similar structure and evolve to a steady state,
characterized by a scaling (stationary) distribution of cell
sizes, shapes, and correlations. The similarity of the scal-
ing state across systems molded by difI'erent physical
forces has led many workers to seek an explanation in-
dependent of the driving forces [4-8]. Our purpose in

this paper is to explore maximum entropy as an explana-
tion for the similarity of many physical cellular networks
once they have attained the scaling state.

Among the properties of the scaling state, the probabil-
ity P„of cells with n sides is the most frequently mea-
sured in experimental systems. However, the best-obeyed
empirical regularity pertains to two-cell correlations. The
Aboav-Weaire law [2,9, 10] states that on average the
sum of the number of sides of the cells immediately adja-
cent to an n-sided cell [11] [nm(n)] is linear in n:

nm(n) = (6 —a)n+ (6a+ pq),

with a —1 (Aboav-Weaire), where pq =g„(n —6) P„ is

the second moment of the P„distribution. (The first mo-
ment for networks of trivalent vertices must be 6.) We
look upon the Aboav-Weaire law as consisting of three
assertions: (i) nm(n) is linear in n. (ii) The slope of
nm(n) is approximately 5, i.e., a —1, empirically. (iii)
Whatever the slope, we have 6m(6) =36+pal. [This as-
sertion is a direct result [9] of the linearity of nm(n). ]

In this paper we focus on the two-cell correlation
Ml(n), the average number of I-sided neighbors of an n

sided cell. Using a maximum-entropy argument we pre-
dict that MI(n) should be of the linear form M~(n)
=AI+nB~. We discuss the experimental status of this
prediction.

One consequence of linear Ml (n) is the empirically ob-
served linearity of the Aboav-Weaire law. The Aboav-

the trivial constraint on probabilities.

g nP„=6, (3)

Euler's topological constraint for trivalent vertices.

QMI(n) =n, (4)

as an n-sided cell always has n neighbors in total.

, QMi(n)P„=IP(,
n

a consequence of counting the edges of l-sided cells both
from adjacent cells (left-hand side) and from within I-
sided cells (right-hand side).

(5)

P M„(l) =P„M (n), (6)

as the number of edges between n-sided cells and l-sided
cells is the same as that between I-sided cells and n-sided
cells. We observe that if and only if MI(n) has the linear
form

MI(n) =21+8(n,
then for every I the constraint (5) may be written

Al gP„+8(gnP„=IP(, (8)

Weaire slope is not fixed by our maximum-entropy anal-
ysis. Both by results of simulation and by statistical
reasoning we show that a previous ("microreversibility ')
argument for linearity and slope 5 is incorrect. While our
maximum-entropy approach reestablishes a theoretical
basis for linearity, the value of the slope in experimental
studies is now unexplained.

Maximum-entropy argument. —The topology of cellu-
lar networks imposes constraints on the possible config-
urations of the cells, and in particular on the possible dis-
tributions P„and M~(n):

(2)
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which is a linear combination of the constraints (2) and
(3). Duplication of the constraints avoids the reduction
of configuration space which would result from imposi-
tion of any new constraints, and is therefore the predic-
tion of maximum entropy. The argument that duplica-
tion of constraints is equivalent to maximum entropy was
originally used by Rivier and Lissowski [12] to prove a
relation between the size and shape of cells, discovered
empirically by Lewis in biological tissues [3,13]. A
demonstration that reduction of the number of indepen-
dent constraints does indeed increase the entropy is given
by Rivier [14,15].

The empirically observed linearity of nm(n) follows
from the linearity of Ml(n) N. oting the definition of
nm(n) in terms of MI(n) and using (7) we have

nm(n)=QMI(n)l= +Anal +n QBll (9)

Thus the linearity of the Aboav-Weaire law follows from
maximum entropy. The widely observed slope —5 is not
explained by the current argument.

Topological simulation. —To test our prediction of
linear Ml(n) we performed a simulation of a cellular net-
work, much like the simulations of Fradkov, Schvindler-
man, and Udler [6,7] and Telley and co-workers [16,17].
A cellular network of six-sided cells, with periodic bound-
ary conditions, was constructed. The simulation proceed-
ed by randomly choosing an edge from among all the cell
edges in the network, and applying one of two elementary
topological transformations (ETTs, Fig. 1) to the chosen
edge. The space-filling nature of the network is preserved
by either ETT.

Note that our cellular network is purely topological,
consisting of a connectivity graph of cell edges and three-
fold vertices. Only the graph is retained during the simu-
lation; there are no geometric or physical attributes, e.g. ,
no vertex positions, edge curvatures, cell areas, or internal
pressures.

The ratio of disappearances to switches is controlled by
a parameter D. D =3 indicates that when the edge

chosen is that of a three-sided cell a disappearance is per-
formed, and otherwise a switch is performed. For D =30,
90% of the switches are rejected, thus preferring disap-
pearances by a factor of 10. For D =0.3, 90% of the
disappearances are rejected. For D =0, only switches are
performed.

Our prediction of linear Ml(n) is well obeyed in D =0,
D =0.3, and D =3 simulations. Shown in Fig. 2 is
Ml(n), the number of 1-sided neighbors of an n-sided cell,
(scaled by 1/PI), from our D=3 simulation. If there
were no adjacency correlations, M~(n) would be propor-
tional to n: Ml(n) =nlPI/6. The curves in Fig. 2 do not
intersect the origin for 1&6, indicating that strong adja-
cency correlations are present, and yet linearity remains.
Two direct consequences of the linearity of MI(n), A6 =0
and the linearity (in 1) of B~/P~, are also observed in our
simulation.

Ml(n) for D=0 and D=0.3 simulations are much
more linear than the D =3 results shown, while for
D =30 substantial curvature at small n becomes visible,
especially for large I. We find that curvature (for all D)
decreases with increasing length of the simulation run.

The limited experimental and Potts-model data avail-
able [6,7, 18] for MI(n) also show significant deviations
from linearity, qualitatively much like the D =30 simula-
tion [19]. This observation suggests that the experimen-
tal systems and Potts model (and our D =30 simulation)
may not yet have reached the scaling regime for neighbor
correlations.

In our simulations, as the disappearance rate D in-
creases, our simulation times are increasingly limited
since we simply run out of cells at earlier simulation
times. Currently we can only report a trend toward in-
creasing linearity as coarsening proceeds. For large D,
longer simulations will be required to thoroughly test the
prediction of our maximum-entropy argument that
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FIG. l. Elementary topological transformations (ETTs) act-

ing on cell edges. (a) Disappearance of a three-sided cell. (b)
Neighbor-switching process. The number of sides of the cells
before and after each ETT is indicated.

I IG. 2. The number of I-sided neighbors adjacent to an n-
sided cell, as measured in a simulation with equal weighting for
the two ETTs shown in Fig. I (i.e., D =3).

1804



VOLUME 67, NUMBER 13 PH YSICAL REVIEW LETTERS 23 SEPTEMBER 1991

&b) =gn P„gnP„=6+p2/6. (10)

Therefore the slope required for stationarity with respect
to neighbor switchings is not 5, but 5+p2/6. In our simu-
lation the measured second moment of P„ is p2=12.69,
and the resulting prediction for the slope of nm(n) is
7.12, close to the observed slope of 7.33. Thus for D =0
the corrected microreversibility argument predicts the ob-
served slope of nm(n), with the small discrepancy attri-
butable to weak second-neighbor correlations. Note that

Mt(n) will eventually attain a linear form. A determina-
tion of the time dependence of Mt(n) for a physically
driven simulation (e.g., the Potts model) or for an experi-
mental system would also be of great interest to check the
extent to which the maximum-entropy predictions apply
in real systems.

Disproof of the microreversibility argument .A—pre-
vious argument [20,21], based on microreversibility of the
ETTs illustrated in Fig. 1, appeared to explain both the
linearity of the Aboav-Weaire law and the universal ob-
servation of slope —5. Here we brieAy rehearse that ar-
gument and show that it is incorrect.

The microreversibility argument assumes stationarity
of nm(n), and posits that any ETT should leave the
values of nm (n) unchanged.

Consider first a cell disappearance as shown in Fig.
1(a). Before the disappearance, the sum of the sides of
the neighbors of the n-sided cell nm(n) =a+b+3+
where . indicates the sides of the other neighbors of
the n-sided cell which are not affected by the disappear-
ance. After the disappearance, we have (n —1)m(n —1)
=(a —1)+(b —1)+ . Subtraction yields nm(n)—(n —1)m(n —1)=5. Therefore, since n could have
been any value, the only possible stationary function
nm(n) is linear with slope 5.

Next consider a neighbor switching, shown in Fig.
1(b). Before the switch, we have nm(n) =a+c+
after the switch we have (n+1)m(n+1) =(a —1)
+(b+ I)+(c—1)+ Subtraction yields (n+1)m(n
+1)—nm(n) =b —1. Assuming that second neighbors
are uncorrelated, it was argued that b is a "typical" cell
with (b) =6. Thus the slope 5 required for the function
nm(n) to be stationary with respect to neighbor switch-
ings is the same as that required for it to be stationary
with respect to disappearances.

Measurements of nm(n) for a simulation involving
random neighbor switchings alone (D=0) are shown in
the upper curve of Fig. 3. The slope is not 5, but 7.33.
The explanation lies in the fact that when we choose an
edge to participate in a switch, the cell b to which it is at-
tached is more likely to be a cell with a large number of
vertices, since larger cells have more edges attached to
them.

More precisely, the number of edges of cells selected in
this way is the sidedness-weighted average
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FIG. 3. Aboav's law: nm(n) is the average total number of
sides of all cells adjacent to an n-sided cell. From the top, the
four curves are results of simulations with increasing rates of
cell disappearances. Lines are linear fits, with slopes 7.33, 6.96,
6.03, and 5.51, respectively.

for D&0 it is central to the microreversibility argument
that the two ETTs result in the same slope, 5.

If the ratio of switches to disappearances affecting an
n-sided cell were independent of n, a linear Aboav-
Weaire law would still result from microreversibility,
with a slope intermediate between 7.12 and 5. However,
there is no reason a priori to expect the ratio to be in-
dependent, since three-sided cells are (by the Aboav-
Weaire law itself) preferentially adjacent to cells with
large n. Larger cells would be expected to experience
proportionately more disappearances, and the gradient of
nm(n) would be closer to 5 for larger cells, violating
linearity.

Discussion. —Now that we can no longer use mi-
croreversibility of the ETTs to explain the widely ob-
served slope —5 of the Aboav-Weaire law in experimen-
tal systems, we are left with a puzzle. It seems likely that
such a coincidence does not depend on the detailed physi-
cal interactions driving a coarsening froth, but rather
reflects an underlying mathematical cause such as topolo-
gy, entropy, or geometry. Our simulations capture both
topology and entropy, however, and do not display slope—5. Simulations of the Potts model have the character
of a well-controlled experiment (i.e., they include a par-
ticular physical driving mechanistn), and do obtain slope
5, but without illuminating the cause [18].

One possible explanation is that real froths may coar-
sen exclusively or predominantly by cell disappearances,
for which the expected slope is 5. We have found that
disappearances alone cannot continue indefinitely, howev-
er, because three-sided cells become extinct. The ratio of
switches to disappearances never falls much below unity.
It is also possible that unmodeled processes such as the
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direct disappearance of four- and five-sided cells may
play a significant role [6,7].

Further experimental measurement of Mt(n) in real
froths could better explore the role of maximum entropy
in the evolution of those froths. The time dependence of
our simulations suggests that existing experiments and
Potts-model simulations may not have fully reached a
scaling state with respect to two-cell correlations. Studies
of the time dependence of both experiments and simula-
tions might help resolve this issue.

The fact that the early-stage deviations from linearity
present in the experimental systems and Potts-model
simulations are captured by our random, purely topologi-
cal model suggests that topological considerations alone
may be su%cient to understand the scaling state, at least
at the level of two-cell correlations. A detailed descrip-
tion of our simulations, settling times, and comparison
with experiment, will be presented elsewhere.
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