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The description of growth at vicinal surfaces leads to an anisotropic generalization of the Kardar-
Parisi-Zhang equation [Phys. Rev. Lett. 56, 889 (1986)] which is investigated by a dynamical renormal-
ization calculation. If the nonlinear terms have opposite signs parallel and perpendicular to the average
step direction, the roughness is only logarithmic. This should be the case, e.g., for step-flow growth. As
the temperature is lowered so that island formation on the terraces becomes significant, a sharp morpho-

logical transition to algebraic roughness is predicted.
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The phenomenon of kinetic roughening [1], i.e., the
emergence of scale-invariant surface fluctuations in
growth processes, has attracted a lot of interest for two
reasons: It is of technological relevance and, at the same
time, it provides a paradigm for the nonequilibrium gen-
eralization of dynamical scaling [2].

In order to be able to design surfaces with special prop-
erties, a roughness tuned by the mode of growth may be
desirable [3]. However, the more typical situation, e.g.,
in thin-film growth, is that one wants to have as perfectly
flat a surface as possible. So far most theories of kinetic
roughening predict [1] that the root-mean-square surface
fluctuations increase algebraically with deposition time,
and that the morphology of the surface develops coarser
and coarser features characterized by a length & parallel
to the substrate with

(hT—h?)"2—¢¢ and £~1'". 1)

These asymptotic power laws define the roughness ex-
ponent ¢ and the dynamical exponent z. Hence, in three
dimensions, the kinetic roughness is predicted [4,5] to be
much stronger than the thermal one which is only loga-
rithmic or, below the roughening temperature, even
nonexistent [6].

Being isotropic, none of the models applies to the
growth of vicinal surfaces, where the tilt direction is spe-
cial, at least as long as the formation of islands on the
terraces does not render the excess steps determining the
overall tilt dynamically unimportant. Therefore the ques-
tion arises if anisotropy is relevant in the sense of giving
rise to a different scaling behavior from that predicted
previously.

From the theoretical point of view, kinetic roughening
has recently been considered in the more general context
of self-organized criticality [7]. This term means the em-
ergence of generic scaling behavior in driven systems. It
is well known that the lifetime of a perturbation diverges
with the wavelength for systems with a conservation law
or a spontaneously broken continuous symmetry [8].
Such a system may therefore be called marginally stable:
Every perturbation decays, but the characteristic time in-
volved may become arbitrarily long. Examples are sand-
pile models (mass conservation) or models of kinetic

roughening (broken translational invariance perpendicu-
lar to the surface). If such a system has nonlinear dynam-
ics and is driven into a steady nonequilibrium state, the
perturbations organize themselves in a way which in gen-
eral implies nontrivial scaling. In sandpile models, an-
isotropy has been shown to be relevant [9,10]—a hint
that the growth of a vicinal surface may also be in a
different universality class from ordinary growth models.

In this Letter I show that this is indeed the case, e.g.,
for growth in the step-flow mode where kinetic roughen-
ing turns out to be only logarithmic. If island growth on
the terraces becomes important, a sharp morphological
transition is obtained to the much stronger algebraic
roughness.

The following model [5] will be considered. The
growth starts from a vicinal surface with an equidistant
array of parallel, monoatomic steps separating high-
symmetry terraces. Atoms are deposited and diffuse on
these terraces until they find a step or desorb. Only when
an adatom reaches a step does it become bound and con-
tribute to the growing film. Island formation on the ter-
races is neglected for the moment. This corresponds to
an idealized step-flow growth mode [11]. The fraction of
adatoms reaching a step is then proportional to the step
density, if the surface is not tilted too much with respect
to the high-symmetry orientation of the terraces, and it
saturates for large tilt angles, where hardly any desorp-
tion occurs anymore, because most adatoms are readily
absorbed by steps. Hence one expects a qualitative
dependence of the growth velocity x on the step density
[12] or tilt angle s as in Fig. 1.

Ignoring the fluctuations, the vicinal surface with slope
5 and growth velocity «(5) is simply described by
Ho(x,t)=5x,+x(5)t. Here, the height Hy is measured
perpendicularly, and the coordinates x=(x;,x ) are
measured parallel to a terrace, x; (x.) being parallel
(perpendicular) to the tilt direction. In the presence of
noise, the height H of the surface deviates from this
reference surface by h =H — H,, which evolves in time
according to the stochastic differential equation

9,h=x[G+8,h)2+ (3, h)2]"2
— k@) +wvidth+v, 0th+n, (2)
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FIG. 1. Schematic dependence of the growth velocity x on
the tilt s. Solid line: only attachment to the steps taken into
account. Dashed line: island formation on sufficiently large
terraces included. Without desorption the growth velocity be-
comes independent of the tilt in this model (dot-dashed line).

where 9,, 9y, and 9, denote the partial derivatives with
respect to ¢, xy, and x ;. The preference of the surface to
have a uniform tilt is expressed by the curvature terms
with positive coefficients [13] vy and v,. It is counteract-
ed by fluctuations in the deposition rate giving rise to the
Gaussian noise 77 with correlator

nx,)nx,t")=2D65(x—x")6(t —1') . 3)

Expanding (2) for small deviations from the global tilt,
one arrives at

Ah=50@ )2+ AL @A)+ vidth+vidih+n, (4)

where a term linear in 0,4 has been transformed away by
x3— x; —k'(5)t. The A’s are connected with the growth
velocity x(s) through [5]

M=x"GE), rL=K'G)/5, )

where ' and x" denote the first and second derivatives
with respect to the tilt s of the surface. From Fig. 1 it is
immediately clear that A is negative while A is positive.
This was first observed by Villain [5] and turns out to be
crucial for the kinetic roughening in step-flow growth.

If both A’s are zero, (4) is linear and equivalent to the
Edwards-Wilkinson equation [14]. It can be solved ex-
actly and gives rise to logarithmic roughness. In the fol-
lowing I shall only consider A, 0. In the isotropic case,
n=A/Ar=1 and r,.=vy/v. =1, (4) reduces to the equa-
tion proposed by Kardar, Parisi, and Zhang [15] (KPZ)
for describing the Eden model or ballistic deposition.
This equation has some remarkable properties which only
partly carry over to the more general case. The first
property is the invariance under a simultaneous sign
change of 4 and A which obviously also holds for (4).

The second property of the isotropic equation is an in-
variance with respect to infinitesimal tilts which is usually
referred to as Galilean invariance [16] because of the re-
lation of the KPZ equation to the Navier-Stokes (or more
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precisely the Burgers) equation. Similarly, (4) does not
change under the transformations

X;— X; —Aj€t, hHh+6x,~~7»,-ezt/2, (6)

where i =Il or L, and € is arbitrary [17].

Third, the KPZ equation can be mapped onto a linear
equation for the partition function of a directed polymer
in a random medium [15]. In the more general case (4),
this works only for r,/r,=1. Then the Hopf-Cole trans-
formation Z(x,t) «cexpliyh(x,)/2vy] maps (4) onto

0, Z=wdiZ+v,81Z+Qw/ra)nZ, (7

which, up to an anisotropic scale transformation, again
describes a directed polymer in a random medium.

In the following the results of a dynamical renormal-
ization-group investigation of (4) will be discussed. The
calculation is a straightforward generalization of the one
described in detail by Medina er al. [16]. In general, the
morphology of an anisotropic surface involves two
characteristic lengths, & and &, =¢&. In addition to the
roughness and dynamical exponent introduced in (1) one
needs an anisotropy exponent y defined by [9]

&i~&r. (8)

One integrates out fluctuations with wave numbers
e 'nla<|k,|<n/a and e “r/a < |k\| < n/a, where a
is a small-length-scale cutoff (lattice constant). This
gives rise to renormalized coefficients in (3) and (4), e.g.,
v.(l,y). Here 1 only consider the renormalization in
lowest order in the nonlinearity (one-loop approxima-
tion). Subsequently one rescales x , — e'x, (and corre-
spondingly x;— e”xy, h— e'*h, t — e'*1), thereby restor-
ing the original lattice constant a. If the system is scale
invariant this should also restore the old coefficients in
(3) and (4), e.g., vi =e“ 7215 (1 x).

It turns out that the A’s are not renormalized. This is
expected [16] if the symmetry (6) which contains them as
parameters is preserved when the small-wavelength fluc-
tuations are integrated out. Under the subsequent rescal-

ing one has A, — e!GHe=2y | and n— el20 _")m. Scale
invariance therefore requires
z+¢=2, and y=1, )

provided that A, #0 and 0. Then one obtains the fol-
lowing flow equations for the remaining coefficients:

aVJ_ g1 rx

— — ——1A4Q,r,) |,
YR [z 2+ Lon? 1 , (1,r )J (10)
or g r ?

v 1 A

=—y,— 1— | — A 17 v/ s 11
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with g, =DA1/vi and
A(y,r,) =larctanr.”? + yarctan(1/r)/2)1/r)/2 .

Obviously, (11) has two stable fixed points, r¥ =r, and
r¥ = —r.. As the stability of the surface requires that
the v’s and hence also r, be positive, the first (second)
fixed point is adopted when the two A’s have equal (oppo-
site) sign. As already explained above, at the first fixed
point there exists a mapping to a directed polymer in a
random medium, and the scaling properties are the same

as predicted by the KPZ equation, i.e., one obtains alge-
braic roughness [18]. Equation (12) shows that the fixed
point (»} =r,, g% =0) is marginally unstable in the g,
direction. This is in contrast to the other fixed point
(rf =—r, g% =0), where any finite bare coupling g, is
renormalized to zero. Hence, if the two A’s in (4) have
opposite sign, the nonlinearity is irrelevant for the scaling
properties, and {=0(og) and z=2 as for the linear
theory [14].

The borderline case, r, =0, is more complicated, as one
has to allow for y=1:

ov, g1 1—

=vi|z— A 4D+ AGr) ||,
31 vl[z 2 L6n2 (1+rv)2(r 3) A()(r)] 13)
aVn Orvvl
al o vl =221, (14)
dg. g1 1—x

= 1—y— ——A—Gr,+13)+34(,r) | |. 15
ar St AT S Gty or ] s

It follows from (14) and the fact that A, is not renormal-
ized that z=2y=2—¢. It is easy to see that again
g% =0 is a stable fixed point, implying logarithmic rough-
ness and z=2. In principle, (15) also has a fixed point
g1 =0 with y=1, but (13) then yields that g¥ must be
negative and hence unphysical.

In conclusion, I have shown that the anisotropic gen-
eralization of the KPZ equation has a rich and unexpect-
ed behavior in three dimensions (two-dimensional sur-
face): If the coefficients of the nonlinear terms have op-
posite sign, they are irrelevant so that the roughness is
only logarithmic. This remains true when one of the
coefficients vanishes. However, if they have equal sign,
the nonlinearity becomes marginally relevant, leading to
the much stronger algebraic roughness known from the
isotropic KPZ equation. All these results have been
confirmed by computer simulations [17].

Recently, Tang, Nattermann, and Forrest [19] investi-
gated the crossover behavior of the isotropic KPZ theory
by taking the renormalized coefficients v(/), etc., of the
equation as the effective parameters governing the modes
of wave vector k =exp(—In/a). A similar approach is
possible here, too, and should give information on, e.g.,
the amplitude of the logarithm and the crossover from
logarithmic to algebraic roughness.

The transition from logarithmic to algebraic roughness
is different from the two morphological transitions in
three dimensions which have been known analytically be-
fore: In the PNG model there occurs a transition from a
faceted to an algebraically rough surface [20], and if the
sign of A changes in the isotropic KPZ theory [21], one
has the same type of algebraic scaling on either side of
the transition, where the roughness is only logarithmic.
However, the kind of transition discussed above is similar
to the one postulated by Yan, Kessler, and Sander [22]
based on a computer simulation of a discrete model, al-

though it should not contain anisotropy of the type sug-
gested here. It is also worth mentioning that the
relevance of the anisotropy is in marked contrast to
thermal roughening, which is not different for vicinal or
high-symmetry surfaces, as far as the scaling is concerned
[23].

The experimental relevance of this has been demon-
strated for a simple model [5] of step-flow growth with a
tilt-dependent growth velocity as given by the solid line in
Fig. 1. If island formation can be neglected, the kinetic
roughening is predicted to be only logarithmic. For
sufficiently large terrace sizes (i.e., small tilts 5) and low
temperatures the probability increases that adatoms form
clusters before they reach a step, hence leading to the for-
mation of islands on the terraces. Therefore the growth
velocity should not vanish for §— 0 but should have a
finite minimum as indicated by the dashed line in Fig. 1.
Lowering the temperature, island formation becomes
significant on smaller and smaller terraces. Thus the up-
wards curved part of x(s) should extend to larger tilts.
Eventually, Ay =«"(5) will change sign, and this implies a
sharp morphological transition from logarithmic to alge-
braic roughness.

If the surface initially is perfectly oriented, the regular
array of steps gives rise to sharp Bragg peaks. As the
surface becomes rough on increasing length scales the in-
tensity of these Bragg peaks drops. Two main differences
are expected on the two sides of the morphological transi-
tion: For logarithmic roughness the Bragg intensity drops
roughly as a power law, i.e., more slowly than the
stretched exponential on the algebraically rough side. At
the same time, power-law peaks should occur at the
Bragg positions if the roughness is only logarithmic, in
analogy to thermal roughness. For algebraic roughness
such peaks are absent. However, very slow crossovers as
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known from the isotropic KPZ theory [19] may cause
difficulties in locating the transition by a diffraction ex-
periment. Other methods like inhomogeneous growth
[24], which gives rise to macroscopically different surface
deformations depending on the sign of &, might be more
feasible. Little is known experimentally about transitions
of the type described above, partly because step-flow
growth cannot be monitored by reflection-high-energy-
electron-diffraction or TEAS oscillations. This is in con-
trast to, e.g., the transition from layer-by-layer to multi-
layer island growth [25], and it would be interesting to
see if this also implies a change of the roughness ex-
ponent.
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