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Fractal Geometry of Isoscalar Surfaces in Turbulence: Theory and Experiments
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We present a Lagrangian calculation of the area of isothermal (or isoconcentration) surfaces in a
medium of Auid turbulence. We argue that such surfaces appear fractal above some inner scale which
depends on the Reynolds number. The fractal dimension is estimated theoretically. The theory is com-
pared to experiments in which a dye is used as a passive scalar in various turbulent flows. We find excel-
lent agreement in many details.
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It is a common assertion that turbulence has fractal
properties [1-3],and much of the recent work in the field
has been propelled by hopes for understanding the small-
scale structure of turbulence using fractal, or even mul-
tifractal, notions [4]. Essentially all the theoretical work,
however, has been phenomenological in nature [5], hav-
ing no basis in fluid dynamics, and offering little in com-
paring theory (other than dimensional analysis) with ex-
periments. In this Letter we present a calculation of the
geometric properties of isoscalar surfaces. We show on
the basis of fluid mechanics that such surfaces appear
fractal on scales larger than some (Reynolds-number
dependent) inner length A, *, while they appear smooth on
scales smaller than X*. This inner scale and the Haus-
dorA dimension of the isoscalar surfaces are estimated
theoretically. The theory is compared here with experi-
ments that use a dye as a passive scalar in a turbulent jet
[61 and other turbulent flows [41, and excellent agreement
is found. In fact, the theory seems to oA'er an explanation
for many of the experimental findings.

For our purposes a passive scalar is a field variable T
that satisfies the equation of motion

aT/at+ u. V T ~V'T =0, (I)
where u is the velocity field in which the scalar is embed-
ded, and K is the scalar diAusivity. One can think of T as
a temperature field, or a concentration field, etc. The
fields are functions of space in a container of integral
scale L. %'e shall consider the geometrical properties of
surfaces on which T is constant. These are "isoscalar
surfaces. " In our theoretical calculation [7,8] we esti-
mate from above the area of a piece of an isoscalar sur-
face contained in a ball of radius r. This estimate con-
tains two terms, one that scales like r and another that
scales with a higher power in r. The second term over-
comes the first term if r is larger than A, *.

Imagine that one needs to calculate the area of the
piece of isoscalar surface contained in a ball 8 of size r,
about a point y =yo, at some time t = to. Our techniques
[8] require following this ball in its Lagrangian evolution
for a short time 6t. This duration is determined by the
requirement that the Lagrangian stretching remains of
order 1. In order to simplify the exposition, and in view

of the shortness of Bt, we can choose coordinates
x =y —up(t —t p) for 0 ~ t —t p & 6t,

where uo is the mean velocity in the ball:

up=(4trr'/3) ' d'yu(y, tp) . (3)
For Bt small these coordinates represent the linear ap-
proximation of the Lagrangian paths, and this suftices for
the present purposes. One obvious requirement for 6t is
that yo+upBE is not larger than the integral scale L. This
makes bt of the order Bt (L/~ u~p. The scalar in this ap-
proximate Lagrangian frame is denoted by T(x, t ),
T(x, t) =T(x+up(t —tp), t). Its equation of motion is
immediately deduced from (1), and it reads

r)T/t)t + (u —up) &T —tc& T =0, 0 & t —t p ~ Bt . (4)
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We shall estimate the area of the piece of the isotherm
T=T: contained in the ball B.

The main tools for estimating the area [7,81 are (i) the
co-area formula of geometric measure theory [9], and (ii)
a nonlinear change of dependent variable in the equation
for temperature.

The co-area formula is a way of relating the weighted
area of isothermal surfaces to integrals in the physical
space. Denote by A, the surface on which T(x) =r
Assume that T is at least Lipschitz; then for any tit (Borel
measurable, non-negative function),

tit(x) ~&T~d x = dr ~ tit(x)dH (x), (5)

where H is the two-dimensional HausdorA measure.
(dH equals a difl'erential element of surface for smooth
surfaces. ) In particular, a good choice of tit(x) is the
form y(x) =gtt(x)p(T(x)). Here gtt(x) is a smoothed-
out characteristic function of the ball B (being unity
within the ball and zero outside the ball), and p is an ar-
bitrary (L ) function of T. This choice provides a way to
calculate the weighted integral

Itt (ttt) =„drtt (z ) areatt (r ), (6)
where areatt(r) is the area of a piece of A, contained in
B. Ideally, we could choose p as a delta function, to turn
(6) to the area of a sharply chosen isoscalar. However,
our techniques do not allow the use of a delta function.
To proceed, we perform the nonlinear change of variables
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g(x, t) =pa(x)G(T(x, t)), where we set
~T

G(T) = - (T —r)p dr . (7)4 T(10,10)

Using Eq. (4) we deduce the equation of motion for g,

which reads

[8,+(u —up). V —xV']g+xga[y(T(x))]'lVTl'=R, (8)
where
R =G(T) [(u up) ~ Vgti —x'Agti] —2@G'(T)VT Vg8 . (9)
Integrating, we get

~f0+~I 1dt„' gati(x)y'(T(x, t))lVT(x, t)l'd'x =
q [g(x, tp) g(x—, tp+6t)]d'x+„

Recall that we need lti(P) = gati(x)p(T(x, t)) lVTld x. The Cauchy-Schwartz inequality
2

I 0+~I
dt I8 (y)6't ~'0

t Ip+61 f
Rd xdl (io)

allows us to estimate the left-hand side of (11) by the right-hand side of (10), multiplied by Jtigti d x. The calculation
contains only routine manipulations [8], and is not reproduced here. The result is

2

1
& T(.imp, 10)+AT 1 f I0+~I

dr „~, dtareati(r) « —, r [c3+c2rBu„/x+c~r /x6t] . (i 2)

6u„is the average velocity Auctuation in the ball 8 during
To calculate the Re dependence of X*, we use (16)

in (15), and find
dt lu(x, t) —upld x. k* =L Re ' '+~ C*

t Ip+df
6u„=(I /6t ) (4trr '/3) (i 7)

In (12), c~, c2, and c3 are nondimensional constants. 6T represents the maximal temperature Auctuation registered in 8
in the time interval [tp, tp+8t]:

6T =sup[i T(x, t) —T(y, s) l], x 6 8, y 6 8, t, s E [tp, tp+ St] .

(i4)
The left-hand side of Eq. (12) represents an average

value of the square of the area of the piece of the iso-
therm [ylT(y, t) =T(yp, tp)l contained in 8 in the inter-
val [tp, tp+bt]. For sufficiently small r the first term al-
ways dominates, leading to a smooth area. On the other
hand, the first two terms become comparable for r =k*,
which is the Reynolds-number-dependent length which
satisfies the equation

Ju~ek //c =c3/cp . (is)
To proceed, we need a physical estimate of the typical

velocity diA'erence across the ball 6u, . This is where the
properties of the velocity field which drives our scalar T
enter. For fully developed turbulence we can use the
standard estimate [10]:

Bu„—(r/L ) «U —(r/L ) «lupi, (i6)
where U is the velocity on the integral scale I. This ve-
locity is used to define the Reynolds number Re on the in-
tegral scale, UL/v, v being the kinematic viscosity. In the
usual Kolmogorov estimate one finds g= —, . Using this
and the estimate for Bt, 6't (L/lupi, we find readily that
the second term in (12) is always larger than the third.
We are thus left with the competition of the first and
second terms. We recognize that the left-hand side of
(15) is nothing but the Reynolds number (or more strict-
ly, the Peclet number) on the scale r. This result makes
perfect physical sense. It says that isoscalar surfaces
would appear fractal on scales larger than those on which
the local Reynolds number exceeds a threshold, c3/c2.
We denote the smallest scale for which (15) is obeyed by

where the constant C* =[(c3/c2)Pr ']'t '+«, with Pr
being the Prandtl number v/x. . We recognize [10] that
the Kolmogorov scale g has the same scaling dependence
on Re, and we predict that A, */g is a Reynolds-number-
independent ratio, X*/g =C*.

Finally, we want to estimate the fractal dimension
above the scale of X*. Examining (12) we see that the
exponent in r of the second term on the right-hand side is
5+(. Since this exponent describes the scaling of the
square of the area of a piece of an isotherm in a ball of
radius r, the dimension for measurements with a yard-
stick larger than X* is 2.5+ g/2. In the standard
Kolmogorov-type scaling g is —,', and the dimension is es-
timated to be 2.67. If, however, the exponent j diA'ered

from —,', so would the dimension.
This theory can be tested against an experiment [6] in

which a dye takes the role of a passive scalar. In Fig.
1 (a) we show a typical two-dimensional image of the dye
in an axisymmetric jet. The image is obtained by laser-
induced fluorescence as follows. A Nd-doped yttrium-
aluminum-garnet laser beam shaped into a sheet of
200-250 pm thickness was directed into a water tank into
which the jet fluid was emerging from a well-contoured
nozzle and standard upstream flow management; the jet
fluid contained small amounts of fluorescing dye which
gets dispersed downstream by turbulence. The fluores-
cence excited by the laser radiation was captured on a
digital camera. The pixel intensity in the digital image is
linearly related to the dye concentration in the jet.
DiA'erent shades of grey in the figure qualitatively reflect
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can be defined at will. The dimension of such a section is
estimated by covering it with squares of edge r, and
counting the number 1V(r) of these squares. Figure 1(a)
also shows the section of an isoconcentration surface cor-
responding to the mean concentration level in the image
(marked by solid outline). The plot of Iog/V(r) vs logr
for this section of the surface is shown in Fig. 1(b).
Here, since the section resides nearly entirely in the fully
turbulent part of the jet, the g value can be taken to be

The plot shows clearly the two expected scaling re-
gimes, one below X* with a slope of 1, and one above k*
with a slope of 1.67~0.04. We do not have at this time
enough data to test the Re dependence of k*.

When the conditions are not appropriate for the use of
(16), modifications in the dimension of the isoscalar sur-
face are expected. The simplest such situation occurs at
the outer boundary of the jet, at which a fractal interface
of dimension DI separates the scalar marked regions from
the ambient. We shall assume that the largest contribu-
tion to the integral (14) for a ball 8 near the boundary
comes from the boundary itself [11]. If this is so, then

g+ DI —3near this boundary we expect 6'u, to scale like r
Using this estimate, Eq (12.) predicts DI =2.5+ g/2
+ (DI —3)/2. The only solution is

(b)

0 I I 1 I I I I I I I I

0.0 0 5 1.0 1.5 2. 0 2. 5 3.0

log(r)

diferent concentration levels. The jet Reynolds number
was about 4000. The sheet thickness was between g and
2g, where here g is the Kolmogorov scale averaged over
the image. For more details see Ref. [6]. The image is
digitized, and any intersection of isoconcentration surface

FIG. 1. The image of the dye and the determination of the
dimension of an isoscalar. (a) A planar intersection of an iso-
scalar surface believed to reside largely in the fully turbulent
part of the jet. (b) The log-log plot of the number /V(r) of the
square area elements of size r containing the boundary marked
in (a), vs the size r The slope of the c.ontinuous line is —1.67.
The dashed line has a slope of —1. The crossover is the scale
X*, which here is about 10 Kolmogorov scales.

DI =2+(. (I g)
If we can still use g= —,', we predict DI =2.33. This value
is in good agreement with the result from box counting
[6] that the dimension of this boundary is 2.35 ~0.05.
Notice that the crossover scale here, say Xz, is smaller
than X*. Repeating the estimate leading to (17) we find
that for ('= —,', Xg/k* =),*/L. This significant reduction
in the crossover scale appears to be confirmed by the
box-counting calculations.

Next we can try to apply this theory to situations
[12,13] in which the Reynolds number is too low to justi-
fy the value g= —,

' . Our basic estimate can be written as

areas (r )—Cr [C'+ [Re(x,t, r ) ] ' j, (19)
where Re(x, t, r) is the local Reynolds number given by

Re(x, t, r) = ds ~u(y, t) —uo~d y. (20)

Assuming a scaling law arear'(r)/r =Q(r/L), with

Q being a constant, we find

log [CC'+ C Re(x, t, r ) ' ] —log Q
log(r/L )

Assume now [13] that Re(x, t, r) =Re(r/L)» ', where
Re is the outer scale Reynolds number. Define A.

* as be-
fore, via C'=Re(x, t,k*)'; we derive after some algebra

D —2=g(R ) (22)
2(log Re ' —log C')

Notice that D is measured here at the scale k*, rather
than as a derivative with respect to r.

So far, g(Re) has been measured in two ilows, the
wake behind a circular cylinder [4] and grid turbulence
[14]. The data, obtained by two diA'erent methods, show
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FIG. 2. (a) The scaling exponent ( in Su, —(r/L)tU, as a
function of Re. Data from two diAerent Bows measured in-

dependently in two diA'erent laboratories. O, wake behind a
cylinder, Re, —165; &, grid turbulence generated in a pipe,
Re, —300. (b) The dimensions of the isoscalar surfaces as
functions of Re in temporally developing countercurrent shear
layer. The symbol & corresponds to the outer interface,
whereas the symbol O corresponds to a surface embedded in the
fully turbulent part of the liow. (c) Data from (a) and (b) plot-
ted together. To compare g(Re) and Dt (Re) from two different
Ilows, we have plotted them as functions of Re/Re, . It is seen

that the two functions appear very similar. 0 corresponds to
Dt and the other symbols as in (a).

the same qualitative behavior which is an abrupt rise
above zero beyond a "critical Reynolds number" Re, for
the appearance of three-dimensional turbulence. Re,
=165 for the wake (based on the diameter) and 300 for
grid turbulence (based on the mesh size). When plotted
as a function of Re/Re„, it appears [Fig. 2(a)] that g(Re)
is a unique function —although it would clearly be useful
to have more data. In Fig. 2(b), we show D —2 and

DI —2 for a temporally developing countercurrent shear
layer. Here Re, —4000 (based on the global thickness of
the shear layer and the velocity diAerence across the lay-

er). Figure 2(c) is a direct test of Eq. (18) for these
flows, and the agreement seems very close. Equation
(22) is well supported by Fig. 2(b), once we observe that
D/Dt —2 in Fig. 2(b). Indeed, disregarding the weak
log(Re'/ ) dependence in (22), we expect D —2 to be

proportional to (.
In summary, we have presented a dynamical theory of

the geometric properties of isoscalar surfaces in tur-

bulence. This seems to be in good agreement with the ex-

isting data. We believe that this approach has implica-

tions for other issues in turbulence. For applications of
this approach to understanding transitions in convective

turbulence, the reader is referred to Ref. [8]. The impli-

cations of this approach for the general theory of tur-

bulence will be expounded elsewhere.
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