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Trapping and Cooling of Atoms in a Vacuum Perturbed in a Frequency-Dependent Manner
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We show that light-induced mechanical forces that act on atoms may be significantly enhanced and
acquire novel physical character when the electromagnetic reservoir which mediates the atomic relaxa-
tion is colored (i.e. , frequency dependent).
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Spontaneous decay of an atomic transition is usually
assumed to be characterized by a single, excitation-field-
independent rate, the Einstein coefticient. However, it
has been suggested [11 and clearly demonstrated [2] that
spontaneous emission rates may be substantially modified
by environmental factors that lead to changes in the cou-
pling of the emitting atom to the electromagnetic vacu-
um. Changes in this coupling have frequently been attri-
buted to changes in the local density of electromagnetic
modes. It has been pointed out recently that a number of
features of spontaneous decay become excitation field-
dependent if an atom's environment perturbs the vacuum
in a frequency-dependent manner. Frequency-dependent
(or colored) vacua may arise, for example, inside mode-
degenerate optical cavities. Some of the eAects of colored
vacua include dynamical modifications of spontaneous
emission [3], cavity-modified Lamb shifts [4], vacuum-
field dressed-state pumping [5], and velocity-dependent
spontaneous emission [6].

New physics has also been found to occur in the case of
atoms coupled to squeezed vacua [7]. We note that
squeezed vacua, in contrast to colored vacua (which pas-
sively arise owing to the presence of boundaries), must be
dynamically created and maintained. Thus, it is not
surprising that colored-vacuum eAects have been studied
experimentally while squeezed-vacuum eAects remain
only a theoretical possibility.

The purpose of this Letter is to demonstrate that the
mechanical eAects of light take on a dramatically dif-
ferent character in the presence of a colored vacuum. We
find that light-induced forces and the atomic velocity
ranges over which they are effective can, in colored va-
cua, be much larger than the corresponding free-space
quantities. The second result implies that atom traps
with large capture velocities may be achievable. Simul-
taneously, the capability to cool to temperatures well
below the Doppler limit, already present in free-space
cooling techniques, persist in the colored-vacuum case.
Our results directly relate to cavity QED studies [8] since
intracavity vacua are frequently colored. .

Traditionally, the light-induced mechanical forces [9,
10] are divided into two types. One is referred to as the
radiation pressure force which arises from directional ab-
sorption and spatially dispersed reemission of light. The
other is the dipole force which is related to the intensity

gradient of the light field and the in-phase part of the
atomic dipole. We are interested here in the eAect of
colored vacua on forces of the second type.

Using a dressed-atom model, Dalibard and Cohen-
Tannoudji [11] showed that dipole-type forces can act to
damp the motion of free-space atoms moving along a
one-dimensional standing-wave optical field tuned some-
what above the atomic resonance. An intuitive under-
standing of this damping was oA'ered in terms of a
Sisyphus-type eAect that arises from the tendency of
free-space spontaneous emission processes to rearrange
dressed sublevel populations as the atoms move so that
the transfer of atomic kinetic energy into electromag-
netic-field energy is favored.

We have generalized the formalism and physical pic-
ture developed by Dalibard and Cohen-Tannoudji to ac-
count for the presence of a colored vacuum. We find that
colored vacua can dramatically enhance the Sisyphus-
type eAect or lead to its existence in situations where it is
inoperative in free space. For example, a large Sisyphus
efi'ect may exist even for resonantly driven atoms in a
colored vacuum. We note also that Sisyphus-type eAects
play a vital role in the recently observed polarization-
gradient cooling and trapping [12] and hence these eAects
may be similarly enhanced and modified in the presence
of colored vacua.

Consider a two-level atom, with ground state ~0) and
excited state ~1), moving along a one-dimensional stand-
ing wave whose frequency co is (to simplify analysis) in
perfect resonance with the rest-frame atomic transition
frequency coo. The Hamiltonian of such a system, written
in the rotating frame and in the rotating-wave approxi-
mation, is given by

p + Q(z)
( $+ )

2f7l 2

where z,p denote atomic position and momentum opera-
tors, O(z) =cocos(kz) is the z-dependent Rabi frequen-
cy, and k =2trlk is the wave vector of the laser field. The
operators o = ~0)&1~ and trt denote standard lowering and
raising atomic operators. In using the Heisenberg equa-
tions to determine the atomic behavior, we use the semi-
classical approximation and substitute mean values for
corresponding quantum-mechanical operators, i.e., z =(z)
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=z, p =p. We introduce dressed-atom states [131

I
~

& =(I/~&)(lO& ~ I»), (2)

P+ = —I -+ ~Pm+I ~ + P+. . (4)

In free space and for resonant excitation, I +-
=I + =I /4, where I is the Einstein decay rate. This

equality implies a uniform distribution of population
among the dressed-state sublevels that is independent of
the atomic position and velocity. Hence, by inspection of
Eq. (3), the atom experiences no net damping force.

However, in the presence of a colored vacuum, the de-

cay rates must be multiplied by factors proportional to
the electromagnetic mode density at the respective transi-
tion frequencies, i.e., I,b =r,""b"p(ro,b) with a, b = + .

~+, n+1; z )

i

—,n+1;z)

i+, n;z)

~
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(-, n-1; z)

FIG. 1. Spatial dependence of the dressed-atom energy
eigenstates for a two-level atom driven by a resonant, standing-
wave field. The photon occupation number is denoted by n.
The solid (dashed) curves represent the ~+& (~

—&) states. The
shaded area indicates the region of enhanced spontaneous emis-
sion arising from the presence of the colored vacuum. The bold
line represents the trajectory of an atom (represented by the
dot) moving from left to right through the standing wave.

which, in the semiclassical approximation, are the energy
eigenstates of the coupled bare atom plus field system.
Note that for resonant excitation the composition of the
dressed states is spatially independent. Note also that the
energy ordering of the dressed-state sublevels varies with

position, as can be seen in Fig. 1.
The dipole force acting on the atom is given by [11]

I(z)= —— [P (z) —P (z)],1tt Bn(z)
2 az

where P ~ are the z-dependent populations of the dressed
states. It can be shown that the populations obey the fol-
lowing rate equations:

Owing to the spatial dependence of the dressed-state
transition frequencies under standing-wave excitation,
coupling to a colored vacuum will generally lead to spa-
tially dependent dressed-state transition rates and, hence,
equilibrium dressed-state populations. As a result, other-
wise nonexistent damping forces arise.

For convenience, we assume that the colored-vacuum
density of modes, p(co), has the following form:

aI,.

p(ro) =1+
r,2+(cu —ro, ) 2 ' (5)

v,„p=aI e/k,

where a denotes a spontaneous emission enhancement
factor and m, is the cavity frequency. The mode density
of certain optical cavities takes on approximately this
form [4,5]. We shall limit our analysis to the case of
strong enhancement factors, a))1, noting that a values
on the order of unity have already been reported and
means of achieving significantly higher values appear
feasible [14]. We further assume that N, =coo+0 so
that the atom-vacuum coupling is largest at the max-
imum frequency of the upper-to-lower dressed-state tran-
sition frequency (see Fig. 1).

In such a case, the dressed-state populations fulfill

dP~
d~

—= —r (p~ p~ ), —

where I ~z =I + + I

I ar,I+~=—1+
4 I, +0 (1 Tcoskz)

and where the steady-state populations are given by
p'~ =r- ~/r, .

The above equations can be solved numerically to
determine the detailed properties of the damping force in

the presence of a vacuum colored as described above. Be-
fore doing so, however, we point out that the basic phys-
ics operative here is quite simple. In the absence of spon-
taneous decay, atoms moving through the standing wave
remain in the same dressed-state sublevel. The energy of
the dressed state rises and falls indicating a nondissipa-
tive interchange of atomic kinetic and potential energies.
Under the influence of the colored vacuum of Eq. (5),
spontaneous decay is present and occurs most rapidly on
transitions of frequency m, . Such decay preferentially
moves atoms passing the standing-wave's antinodes from
the higher-energy dressed-state sublevel to the lower-
energy one. Provided that the atoms pass through each
antinode slowly enough so that they experience an
upper-to-lower dressed-state transition, one finds, as
shown in Fig. 1, that the atoms are forced to perpetually
climb against a locally increasing potential and therefore
dissipate kinetic energy. This damping turns out to be
fully eA'ective as long as the atomic velocity does not
exceed
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where e = (2a) ' (I,/0) '/, and e/k is the effective dis-
tance over which the colored vacuum increases the
upper-to-lower dressed-state-sublevel transition rate from
I/4 to approximately aI/4. For atomic velocities up to
v, ,p, every antinode passage is most likely accompanied
by an upper-to-lower dressed-state-subleve1 transition.
Note that the capture velocity v, „. ~ for cooling in a
colored vacuum is not bound by atomic constants and can
increase without limit as the enhancement factor is in-

creased. Hence, colored vacua may dramatically enhance
the performance of standard atomic traps.

We have solved Eq. (6) utilizing the underlying spatial
periodicity of the dressed-state populations and by assum-

ing (as in Ref. [11]) that velocity changes accruing dur-

ing an atomic relaxation time are sufficiently small to al-
low us to replace the time derivative of Eq. (6) with
vd/dz. We have calculated the. quantum average of the
dipole force acting on the atom by substituting the ex-
pressions for the position-dependent populations into Eq.
(3). Finally, we have calculated the spatially averaged
force f obtained by averaging over a spatial period of the
standing wave. In Fig. 2, we plot our numerical results
for f as a function of velocity for various values of the
cavity enhancement factor a. For comparison, we also in-
cluded in Fig. 2 the velocity dependence of the force ex-
perienced by an atom driven by an oA'-resonant field in a
free space (identical to Fig. 7, Ref. [11]). As already
mentioned, the colored-vacuum-mediated damping forces
are both larger and peak at higher atomic velocities than
in the free-space case.

0

We now attempt to motivate the qualitative variation
of damping forces with atomic velocity that is shown in

Fig. 2. For slow atomic velocities (kv/I & 1), the
dressed-state populations at position z can be well

approximated in terms of the steady-state populations
at some previous position according to [11] P ~ (z)
=P ~ (z —v/I ~~(z)). Expanding the time-lag expres-
sion in v we find that the spatial average of the dipole
force is equal to f= —ymv. In the limit of large a the
friction coefficient y can thus be approximated by

lrtk' n
2m I

(9)

Note that the standard free-space friction coefficient for a
resonantly driven two-level atom is equal to zero. Intro-
ducing a detuned free-space driving field whose Rabi fre-
quency 0 exceeds the detuning hi, one obtains a nonzero
damping coefficient whose magnitude is on the order of
hk 0/2I m. Since we have found in our numerical simu-
lations that f is optimized for a=1, we see that, in the
low-velocity limit, the damping force experienced by a
resonantly driven atom in a colored vacuum is similar to
that experienced by a nonresonantly driven atom in free
space. The inset in Fig. 2 shows the spatially averaged
damping forces for low-velocity atoms in both the free-
space and colored-vacuum cases. We see that the slopes
of the curves and hence the friction coefficients are nearly
equal, in agreement with the above discussion.

For the case of intermediate velocities (I & kv/I
& 2am), the atom moves slowly enough to relax in the re-

gion of enhanced spontaneous emission, but does not have
time to relax otherwise. In this case, the atom exhibits a
maximal Sisyphus-type effect [11];see Fig. 1. The incan
dipole force f acts to provide damping and is given ap-
proximately by

Q)
O -200-

~O

Q)
Q)
U

-400-

U

U
CL

-600
I

50
Velocity (I/k)
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hk0 1+exp( —2+I /vk)
1+ (21 /vk ) '

By inspection of Eq. (10), we see that for intermediate
velocities the force achieves a value of the order of
6kQ/2. This force can be substantially larger than the
free-space damping force.

For the case of high atomic velocities (kv/I ) 2ae),
the atom moves so fast that it experiences only the spatial
average of the local decay rates [11]. Therefore, the
force can be approxiinated as

FIG. 2. Spatially averaged mechanical force experienced by
a resonantly driven atom moving along a standing wave in a
colored vacuum (solid lines) as a function of velocity for
0 =1000I and for various values of the enhancement factor a.
The cavity linewidth is adjusted so that e = 1 for each value of
a, where c=(2a) ' (I, /ri) ' . Recall that the force vanishes
when a=0 for a resonant driving field. For comparison, the
conventional force experienced by an atom in a Aat vacuum
(a =0) driven by an oF-resonant field (ai —coo =2001) is shown
(dashed line). Inset: The velocity-dependent force at low ve-

locities.

I s/4 3/4ii+2 a
2V 2U

where the bar over the decay rate indicates that a spatial
average over a period of the standing wave is to be per-
formed. Note that the force is inversely proportional to U,

indicating that the kinetic-energy loss per unit time is ve-

locity independent in this regime (recall that the loss of
kinetic energy of the atom passing the distance k per unit
time is given by —vf). The a-dependent factor in Eq.
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(11) may be quite large, so that f in the presence of the
colored vacuum can become much larger than in free
space.

One remaining question is what the low-temperature
limit is for cooling of atoms in colored vacua. In free
space, this limit is higher than the Doppler limit
(kaT=AI'/2, where ktt is Boltzmann's constant) because
of the large quantum Auctuations of the dipole forces that
give rise to diffusion of the atomic moinentum [11]. In a
colored vacuum, we have found that an atom experiences
little diffusive heating when it is located in the vicinity of
the minima of the potential-energy wells shown in Fig. 1.
In particular, the dipole diffusion coefficient can be es-
timated at these locations (i.e., z=nX/2~ e/2k; n =0,
+ I, + 2, . . .) for an atom at rest and is given by

Dd;p=46 k 0 /a I . (12)
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