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Chiral Symmetry in Hot QCD
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Recent lattice calculations of static hadronic screening lengths and the quark number susceptibility
are interpreted in terms of a simple constituent quark model. The conclusion is that just above T, the
nature of the hadronic modes is rather well described in terms of elementary z and o., as well as light
quark, modes. Hence chiral symmetry in the absence of symmetry breaking terms is realized through
massless quarks rather than through parity doubling.
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It is widely assumed that the QCD ground state breaks
chiral symmetry spontaneously. Quark masses break the
symmetry explicitly, leading to a small mass for the pion,
the pseudo Goldstone boson of the broken symmetry.
Furthermore the axial current is partia11y conserved, van-
ishing like the quark mass m —m . EA'ective Lagrang-
ians that incorporate this scenario have been very success-
ful in describing low-energy aspects of the strong interac-
tions [1]. There is, however, no proof of chiral symmetry
breaking in QCD. The strongest evidence probably
comes from lattice calculations [2] which point towards a
nonvanishing condensate (gyes) in the continuum limit.
On the more qualitative level there is Casher's beautiful
argument [3] which suggests that confining theories
necessarily break chiral symmetry. In the limit of an
infinite number of colors it was proved [4] that the VVA
three-point function has a massless pole which, since only
mesons contribute to leading order in I/N, was interpret-
ed as being due to a massless pion. A similar argument
can be made at any % invoking the so-called 't Hooft
anomaly constraints [5] which again suggest the existence
of a massless pion and hence chiral symmetry breaking—assuming confinement.

At finite temperature and/or finite density one expects
the chiral symmetry to be restored beyond a certain tem-
perature (density). One can ask then in what fashion the
chiral symmetry will be realized in the symmetric phase.
The standard scenario of deconfined quarks and gluons
would suggest that there are massless quarks so that
chiral symmetry is realized explicitly. There is a serious
problem with such a scenario though which should also
be kept in mind later on when we compare lattice data
with a model featuring colored (constituent) quarks. If
there is a gap in the phase boundary in the T-m plane—and recent Monte Carlo simulations suggest that this is
so—then there should be a one-to-one correspondence be-
tween singularities in correlation functions in the sym-
metric and the broken phase [6]. If, in the symmetric
phase, "real" quarks are the same as constituent quarks,
then it ought to be possible to dissociate hadrons into
quarks. As a matter of fact there is an argument due to
Mueller [7] which suggests that there cannot be any
(Coulombic) bound states at very high temperature. The
correlation function of hadrons in this case have singular-
ities which they do not have at zero temperature. Also, it
is possible that QCD at high temperature can be reduced

to an eA'ective three-dimensional confining theory [6],
which again makes it diScult to interpret eAective models
with colored quarks.

There is a diff'erent way to realize chiral symmetry if
one assumes that the symmetric phase consists of hadron-
ic modes rather than deconfined quarks [6]. This
scenario consists in parity doubling the known spectrum
of hadrons. In particular, the nucleon and its parity
partner are massive and degenerate. The simplest way of
seeing that this is consistent with chiral symmetry is by
realizing that it is possible to write down a chirally sym-
metric mass term for parity-doubled spinors [8]. Alter-
natively, one can follow the group-theoretical arguments
explained by McLerran [9]. In view of the standard lore
about chiral symmetry breaking explained in the previous
paragraph the notion of a confining yet chirally sym-
metric phase is somewhat strange. At large N, where
both the concept of deconfinement and chiral symmetry
restoration can be defined unambiguously, one can prove
that Td ~ T~, i.e., that deconfinement happens before
chiral symmetry restoration [101. At finite N no definite
conclusion can be reached however. The axial anomaly
does not seem to put any constraints on the way chiral
symmetry is realized at high temperature [11]. This
means that the theory does not necessarily contain a
massless excitation which, in the absence of spontaneous
chiral symmetry breaking, one would identify with a
massless quark. Hence the possibility of a confining but
chirally symmetric phase is not ruled out a priori

It was also suggested by DeTar [6] that numerical
simulations of lattice QCD could shed some light on the
issue of "pseudoconfinement" at high temperature, i.e.,
on the notion that only color-singlet hadronic modes
propagate at large distances. By measuring the correla-
tion function

C(z) = g (H(x,y, t;z)H(0)) —e (I)
,x,y, 1

of two hadronic operators in one of the spatial directions
one obtains information about the static part of the real-
time dispersion relation of the hadronic disturbance of
the plasma created by the local operator H. The mass
governing the exponential decay of C(z) is called a
screening mass while its inverse is called a screening
length. Note that at least in principle it is possible to ob-
tain the real-time dispersion relation from imaginary-
time correlation functions by analytic continuation in the
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discrete Matsubara frequencies. In practice, of course,
one is limited to measuring static correlations of the type
in Eq. (1) and there are by now a number of such calcu-
lations. The first calculation was done by DeTar and Ko-
gut [12] who found using nf =4 flavors of Kogut-
Susskind fermions that the screening masses are large (of
order several times the temperature) and degenerate for
the parity partners (x, o), (p, A|), (1V,N*). Furthermore,
the pion mass above T,. scales linearly in the quark mass
m —indicating that it is no longer a Goldstone boson.
Similar results were also reported for two flavors [13].
Interestingly enough, almost identical results to those of
Gottlieb et al. for the screening masses were obtained in

the quenched (ni =0) approximation at the same physical
temperature [14]. There is also a recent calculation by
the MT, Collabora. tion [15] in which both quenched and
unquenched data at rather weak gauge coupling are re-
ported.

The fact that one finds hadronic modes with large
parity-doubled masses seems to confirm the nontrivial na-

ture of the hadronic plasma at large distances, including

the realization of chiral symmetry by parity doubling.
One must be careful, however, in interpreting these re-

sults. There is a rather trivial fact (also observed in Ref.
[14]) which is the following: Meson and baryon correla-
tion functions computed with free quarks give screening

masses in the limit of vanishing quark mass which are
essentially 2 and 3 times the lowest Matsubara frequency
on the lattice, run=+/n, a =rrT, due to the antiperiodic
boundary conditions used in the time direction. This

might be a bit counterintuitive in the case of a meson

which is a boson. This boson is, however, made up of two

independently propagating fermions giving it twice the
"mass" of its constituents. This mass receives perturba-
tive corrections in a situation where perturbation theory
is adequate. Large deviations indicate nonperturbative

eAects, i.e., the formation of a bound state. One should

also note that it is diScult to diAerentiate between parity
doubling and (almost) free quarks on the basis of the

functional form of C(z). (Using slightly more sophisti-

cated tests for parity doubling [131 also does not help

since those tests are based on properties of the quark

propagator which are trivially satisfied in the case of free

quarks. )
In Fig. 1, I present a compilation of screening masses

which I have taken from the literature. Shown are z, o,
and nucleon masses which are the same for their parity
partners. I have also shown the masses of mesons and
baryons constructed from free quarks on the lattice,
M =n arcsinh[sin(n/n, )], where n =2 for mesons and
n=3 for baryons. The upper and lower lines correspond
to n, =6 and n, =4 respectively. Using least-squares fits
to the same functional form as used in the calculation
of the QCD screening masses I obtained for the free
meson and baryon masses m /T=(5. 8,6.5) and lv/mT

=(8.5, 9.8) for n, =4 and 6 (and n, =20). The data at
the three largest temperatures are from quenched calcu-
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FIG. l. The measured screening masses for (x,o) (squares),
p (diamonds), and (N+, N ) (bursts) along with the continu-
um cr model predictions (solid lines). The upper and lower
dashed lines denote the masses of the free hadrons on an n, =6
and ni =4 lattice, respectively. The data points at the lowest
temperature show the splitting of the (z,o) in the broken phase.

lations on lattices of time extent n, =4 in Refs. [13] and

[14] (MT, Collaboration) where the gauge couplings
were such that the temperatures are 3T,/2, 4T,/2, and

5T,/2. The data in the chirally broken phase are from

n, =8 lattices in Ref. [12] and correspond to T/T, =0.75.
The remaining data are taken from Ref. [11]. Their lo-

cation in T/T, is essentially a guess, since the gauge cou-

plings there do not have any special value which allows
for easy translation into those units. Also, there is no in-

formation about the zero-temperature spectrum at those
values of the gauge coupling which would give the tem-
perature in units of the p mass [16]. In the absence of a
more sensible procedure, I have used the asymptotic scal-
ing formula with a critical gauge coupling taken from the
Columbia group [17]. For the qualitative argument that
I am giving here this should suffice.

Another interesting quantity obtained from lattice cal-
culations is the baryon number susceptibility at zero
chemical potential g as a function of the temperature
[18]. This quantity, which is defined as the derivative of
the quark number density with respect to the chemical
potential, is a direct measure of the mass of the lightest
baryonic excitation since it tells us how diScult it is to
add additional baryons to the system. Below T, this

quantity is essentially zero, because the baryons are mas-
sive, exponentially suppressing the susceptibility. For a
gas of free massless quarks the susceptibility is just
g =nf T . Gottlieb et al. found that above T, the suscep-
tibility is large, ga =0.22 (a is the lattice spacing) com-

pared to ga =0.29 for a gas of massless fermions on an
8 x4 lattice [the continuum value is g/(4T) =0.125].
Hence the baryonic excitations above T, are light.
Again, very similar results were also found in the
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quenched approximation [191.
In the remainder of this Letter I would like to discuss

the data and interpret them in terms of a simple model
which I believe captures the basic physics. It seems clear
that p and nucleon screening masses are very well de-
scribed in terms of simple propagation of nearly massless
quarks. The large masses one sees are purely kinematic
in origin and an artifact of the boundary conditions used
in the imaginary-time formalism. On the other hand, it is

equally clear that the z-~ masses are significantly smaller
than those of free mesons. This, however, is hardly
surprising. After all, the scalar and pseudoscalar modes
are rather special as far as chiral symmetry is concerned:
Approaching T, from above, the pion is about to become
a Goldstone boson whereas condensation is about to occur
in the o. channel.

It is precisely the fact that the z is not very well de-
scribed in terms of a simple quark model that has led to
construction of the chiral quark model which has both
quark and gluon as well as pion degrees of freedom [20].
One imagines that the constituent quarks inside a proton
are essentially free and interact only weakly via gluons.
Here I will explore whether a simple extension of this
idea to finite temperature can describe what we have
learned from the lattice. Whereas Manohar and Georgi
[20] use a nonlinear cr model I will employ a linear model
to describe the spontaneous breakdown of chiral symme-
try. The reason is that one needs an explicit o. particle
which in the nonlinear model has been integrated out.
The model, then, is simply the old Gell-Mann-Levy mod-
el [21] where the fermion field is considered to be a con-
stituent quark. In the following I will restrict myself to
two flavors and I will drop all reference to the gluons
which I assume are only weakly interacting with the con-
stituent quarks. The Lagrangian is

2

[(a„) +(a„x) ]+ P ( +K )+ x
( +K

+ctr+ lyQ+g(o' —t ys cK)]lp.' (2)

The analysis of the model at finite temperature is quite
standard [22]. Since we are interested in comparing with
the Euclidean lattice theory, all computations are done in
the imaginary-time formalism. After shifting the o. field

by its expectation value v one obtains for the zero-tem-
perature, tree-level masses m~=gv, m =p +(X/6) v,
and m =p + (A,/2) v . This along with the relation
c =f m which follows from PCAC (partial conservation
of axial-vector current) and the fact that v=f fixes all
the parameters in terms of physical quantities. I used
m =140 MeV, m =600 MeV, m~=300 MeV, and

f =94 MeV. By demanding that the shifted cr field has
no expectation value, v picks up a temperature depen-
dence through the finite-temperature parts of the tadpole

CQ
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FIG. 2. Quark number susceptibility and energy density of
z's, a' s, and constituent quarks in the a. model. The solid curves
correspond to a gas of quarks below and above T, whereas the
dashed curves correspond to a gas of nucleons in the broken
phase.

diagrams at the one-loop level. If the explicit symmetry
breaking term is absent there is a phase transition at T,
where v=0 and the symmetry is restored. In the follow-
ing, since c&0 the symmetry is strictly speaking never re-
stored. Finite-temperature meson masses were computed
in the following way: The counterterms at zero tempera-
ture were fixed by demanding that the inverse propagator
satisfy D '(p) =m for p close to p=0; this way the
finite-temperature mass shift is simply obtained from
Zii(0) where Zii(p) is the temperature-dependent part of
the self-energy. The mass so defined is related but not
identical to the mass obtained from the pole in the propa-
gator. For the qualitative discussion that follows, this
does not matter however. The one-loop temperature-
dependent masses such defined are easily computed em-
ploying the "Saclay trick" explained by Pisarski [23].
All integrals reduce to simple one-dimensional integrals
over Fermi or Bose-Einstein distribution functions.

In Fig. 1 the solid lines represent the o. model masses
as a function of the temperature. The p and nucleon
masses plotted there are simply multiples of gv(T)+zrT
which is the ("tadpole" ) constituent quark mass if the
momentum-dependent part of the quark self-energy due
to z and o emission is dropped. These self-energy correc-
tions are expected to contribute a mass of order O(gT)
for large T. The qualitative features of the lattice data
are nicely reproduced by the simple continuum model.
The quark number susceptibility is shown in Fig. 2. The
plot was obtained by using the one-loop thermodynamic
potential [24] whose temperature-dependent part is given
by

k dkO(T,p, v) =(VT) [—41V, [in(1+e ' " )+ln(1+e ' " )]+ln(1 —e )+31n(1 —e ')(, (3)4 2 2
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where E; =(m; +k ) 'l . 0 depends on the vacuum ex-
pectation value v of the o field through the masses m;.
Thermodynamic quantities like the susceptibility or ener-

gy density are obtained by substituting for v the value
v(T) where the full effective potential has a minimum.
Using the constituent quarks produces the solid line
which is much smoother than the data of Ref. [18]. (I
have not included them in the figure because of the large
finite-lattice-spacing corrections to the magnitude of the
susceptibility. ) If, on the other hand, one uses nucleons in

the broken phase the dashed line is obtained. One might
motivate such a procedure by invoking confinement in the
broken phase. In the symmetric phase I have used the
mass and degeneracy factor associated with quarks of
course. Just below the transition it might be possible to
describe quantities such as the energy density as a gas of
massive constituent quarks rather than a gas of mesons
and baryons (such a description makes intuitive sense
since one can imagine the hadrons to overlap significantly
near T, ). In this ca. se there are matching degrees of free-
dom below and above the chiral transition which is
diAerent from the scenario described in a recent paper by
Brown et al. [25]. The energy density calculated from
Eq. (3) is also shown in Fig. 2. One sees a sizable change
of the energy density but again the curve is smoother
than the data [26]. The dashed line shows the energy
density when nucleons are used in the broken phase.

It must be emphasized that the fact that quenched and
unquenched simulations give very similar results points
towards the fact that the features seen in the screening
masses and the baryon number susceptibility are largely
just consequences of symmetry, which in practice
translates into properties of the quark propagator in a
background gluon field. The data also tell us that z and
o are not well described in terms of weakly interacting
quarks. The model has the correct symmetry built in and
also treats these two modes as elementary excitations.
(There is the obvious issue of double counting tt's and n's
which I ignore. This issue is better discussed within a
nonlinear model [20].) It is interesting to speculate on
what the relevance of all this might be for the real-time
hadronic excitations of the high-temperature QCD plas-
ma. In this respect the model presented here paraphrases
earlier work by Hatsuda and Kunihiro [27] in the context
of the Nambu-Jona-Lasino model. There the authors
found evidence for cr and x modes of finite width in addi-
tion to a quark-antiquark continuum. At the tree level
the "constituent" quarks are massless in the symmetric
phase. In higher orders the quarks pick up thermal
masses, i.e., the pole in the quark propagator moves oA'

the light cone while remaining chirally symmetric [28].
Hence there is no need for parity doubling. The fact that
m =m is just a consequence of chiral symmetry. Monte
Carlo simulations show [26] that the matter contribution
to the energy density —a short distance quantity —is well
described by a gas of weakly interacting massless quarks
in the symmetric phase. The above discussion suggests
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that this might be the case at large distances as well,
modulo the special status of the z-a modes. To summa-
rize, the simple constituent quark model described here
nicely describes features of chiral symmetry restoration
observed in lattice Monte Carlo calculations.
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