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The eA'ective conformal field theory governing the long-distance dynamics of string solitons in four di-
mensions, such as the Nielsen-Olesen vortex or QCD strings, is described. It is an interacting,
Poincare-invariant conformal field theory with four bosons and c =26. The compatibility of these naive-

ly contradictory features is explicitly demonstrated through second order in a perturbation expansion
about the long-string vacuum.

PACS numbers: 1 l. ]7.+y

Consider the Abelian Higgs model with spontaneous
symmetry breaking at a length scale a. This theory con-
tains a Nielsen-Olesen vortex [1] whose thickness and
string tension are, up to dimensionless couplings, charac-
terized by the same scale a. At distances much greater
than a, most degrees of freedom are frozen out. Only the
transverse oscillations of the vortex, which are massless
by Goldstone's theorem, remain. Integrating out the
heavy degrees of freedom leaves an eA'ective field theory
of the transverse oscillations,

SXe'

Here, X denotes the world sheet swept out by the vortex
in spacetime. The vortex has an energy proportional to
its length, so the leading term in the action is

1S~ = —
2

&area,
4za

where the area is computed with the induced metric and
higher-order corrections are relatively suppressed by
powers of a.

Equations (I) and (2) appear to define something rath-
er familiar, the bosonic string theory. However, for the
purpose of describing the quantum states of a long
Nielsen-Olesen vortex none of the standard string quant
izations is correct. To see why this is so, consider the fol-
lowing properties of the vortex theory. First, it is Lorentz
invariant with a positive Hilbert space, since these prop-
erties are inherited from the underlying field theory.
Second, the vortex has only transverse oscillations, D —2
in all [2]. In the collective-coordinate method [3] one
starts with the static classical solution, a long straight
string, and the collective oscillations are the Goldstone
modes associated with broken translational symmetries.
The long-straight-string solution breaks the D —2 trans-
verse translational symmetries, but is invariant under
time and longitudinal translations. For simple examples
like the Abelian Higgs model, one can check this reason-
ing explicitly against the spectrum of zero modes.

Now compare these features with properties of the

standard string quantizations. The light-cone quantiza-
tion spoils Lorentz invariance outside the critical dimen-
sion of 26 [4]. The covariant (Virasoro) quantization
leads to longitudinal oscillators outside the critical dimen-
sion giving a total of D —

1 oscillators [5]. The Polyakov
quantization contains an additional Liouville mode and
also leads to D —

1 oscillators [6]. Thus none of these
quantizations can apply to the Nielsen-Olesen vortex.

The same paradox holds for long QCD flux tubes,
where we consider for simplicity the hypothetical case of
ultramassive quarks so the tubes cannot break. Here the
theory is strongly coupled so one cannot carry out the
collective-coordinate method as explicitly, but a massless
longitudinal mode would be unnatural from the two-
dimensional point of view: Goldstone's theorem does not
protect it from acquiring a mass. The only degrees of
freedom required by the symmetries of the low-energy
theory are the D —2 transverse oscillators.

One possible way to resolve this paradox would be to
start with the known path integral for the underlying field
theory and carry out the collective-coordinate quantiza-
tion with careful attention to the path-integral measure.
Then convert the path integral to covariant form, in

which the integral runs over D unconstrained X" fields
with action [7,8]

go=, dr dr rl+X" rl —X„.1

4+a

In addition there will be some determinants. On the
physical grounds discussed above, the result cannot be the
usual covariant theory. We can make a good guess as to
the diA'erence; we will then verify the self-consistency of
this guess by other means. The measure in (I ) derives
from the physical motion of the underlying gauge and
Higgs fields, and so should be built out of physical objects
such as the induced metric

h.b =a.x aha„.

There is no intrinsic metric present in the initial theory,
and we will not introduce one. It is then plausible that
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the determinants are the same as found by Polyakov [6],
but built out of the induced metric rather than the intrin-
sic metric. The Polyakov determinant in conformal

gauge is e' ', where, in terms of Polyakov's intrinsic
metric e~,

5( = dr dr a+pa
26 —D

48m.
(5)

Substituting the induced conformal gauge metric h+
for e~ one obtains [9]

a+x a xa+x a' x
4g~ " (a+x. a x)'

The appearance of nonpolynomial terms in (6) may seem
alarming. However, we shall see momentarily that these
terms are perfectly well defined in an expansion about the
long-string vacuum.

We will not carry out the above procedure explicitly.
Instead we will use an idea employed by David, Distler,
and Kawai (DDK) in a similar situation [10]. That is,
we consider a world-sheet field theory with naive mea-
sure, absorbing the Jacobian into general coefficients in

the action. The only restriction on the action is confor-
mal invariance, a remnant of the coordinate invariance of
the original action. We diAer from DDK in two respects:
(i) We have no intrinsic metric and so no Liouville field,
and (ii) we do allow in the action terms which have an
arbitrary, not necessarily polynomia1, dependence on
a+X a —X as in Eq. (6). The inclusion of such terms is
motivated by the preceding heuristic discussion. Such
terms are sensible in an effective theory of long strings
because a+X a-X has a large classical expectation value

for long strings. We are describing here an effective
string theory, valid only for a string whose length is great
compared to the fundamental scale a. As with other
effective theories, there will be an infinite number of
terms, suppressed by powers of a, and the theory breaks
down when extrapolated to short strings. It cannot, for
example, be expanded around X=O to compute excita-
tions of a small closed string.

To proceed, it is convenient to periodically identify
space in the X' direction with a very large radius R, and
to consider strings that wind once around this direction:

X"(r, a+2ir) =X"(r, a)+2+RSu (7)

This identification avoids infrared divergent expressions.
In the sector with winding number one, we expand
around the classical ground state of the leading-order ac-
tion (3),

X,") =e~~Rr ++e" Rz

where the periodicity, equation of motion, and Virasoro
constraints imply that e "+ are null and that

Ie+. e —= —
& .

Next we write the general Lagrangian in an expansion
in powers of R ', where each first derivative of X" is of
order R. Every term must have world-sheet dimension
(1,1). We exclude terms proportional to the leading-
order equation of motion a+a X", which can be removed
by field redefinition, and terms proportional to the
leading-order constraints a ~X.a ~X, which vanish weak-
ly between physical states up to higher-order operators.
Through order R the only possible terms (up to total

I derivatives) are then

a+X a Xa+X. a —X
, a+x" a x„+p, +o(R ')

4n 4 a2 (a,x a x)' (9)

These are the same terms already considered in Eqs. (3) and (6), except that for now we allow a general coeflicient f'or

the induced metric Polyakov term. This action is invariant [i.e., BS~ O(R )] under the modified conformal transfor-

mation

pg ', a+x"
Sx =~ (r )a Xu —"' a'~ (r )

2 a+xa x'
and similarly for (+~ —). The Noether procedure gives the leading correction to the energy-momentum tensor,

a —x a x+~ +o(R ),a+x a'x
2a2 2 a+X a —X

(io)

which obeys a+T —~ O(R ). Note that while the leading modification of 5 in (9) occurs at order R, the result-

ing modification of T is order R ' becaus—e the first term in the conformal transformation (10) is of order R. This
will be seen shortly to have important consequences.

We now expand around the long-string vacuum. In terms of the fluctuation field Y" X"—Xul the Lagrangian be-

comes

(a+ Y e —)(e+ a Y)+O(R ).
xR

T —= — e — a —Y — —a Y. a Y ——e+. a —Y+0(R )R 1 3 —2

+ 8 v8 v+R 1 P
8+a 4+a

To obtain the T ——T — operator product to order R, we keep terms in T ——through order R

(i 2)

1682



VOLUME 67, NUMBER 13 PH YSICAL REVIEW LETTERS 23 SEPTEMBER 1991

and to the necessary order the YY propagator is the unmodified —a 1n(r + r ). The operator product is then

T (. )T (o)= + T (o)+ e T (o)+o(R ').
2(r )' (r )' (i 4)

The order-R shift in the central charge, c=D+12P,
arises from the cross term between the R' and R
terms in T-

This is something new: a D-dimensional Poincare-
invariant conformal field theory consisting of D bosonic
fields with variable central charge. In fact, there is a
theorem that this is impossible: The right- and left-
moving world-sheet currents associated with spacetime
translations are separately conserved in a conformal field
theory, and so can be written as the gradients of D free
fields, with central charge D. Here the proof of separate
conservation [11] breaks down because there are opera-
tors of negative dimension, inverse powers of 8+X 8 —X.

The condition that the coordinate invariance not be

p I))) T

a)))e

gives the Virasoro generators

P=P = (1 s)

This is the precise value obtained earlier in Eq. (6) by
naive reasoning —unlike the case studied by DDK there is
not even a finite renormalization. We conclude that the
long-distance theory of Nielsen-Olesen and QCD strings
is given by the action (9) with coeflicient P,

As a further check, we now consider the spectrum. Ex-
panding

8 —Y" =a (i6)

R 1 ~ PcL„=—e — a„+— Z:a — . a„,:+ B„p—
0 2 )p) = — 2

2
P,an. —2

R
e+ a„+O(R ) .

The operator product (14) implies that the generator
satisfy a Virasoro algebra,

[L„„L„]=(m —n)L„,+„+26(m —m)B„, 0/12;

this algebra can be used to determine the normal-order-
ing constant in Lp. There is a second copy of the
Virasoro algebra from the left movers.

The quantum ground state Ik, k;0) is an eigenvector of
ap and ap with common eigenvalue 0k", and is annihilat-
ed by the lowering operators. The total momentum of the
string is

, (e~++e~ )+ (ay+a(),
20 20

the first term coming from X",i and the second from the
fluctuation Y". Imposing the physical state condition
[12] Lo =Lo= 1 gives k ' =0, and for the total rest energy
of the string

( 2) 1/2 + O(R
—3)

20 2 12R
(i 9)

The first term is the potential energy for a string of
length 2nR, and the second is a Casimir energy. The
value of the Casimir energy is an important check: On
general grounds one expects an energy —1/12R per phys-
ical degree of oscillation, which is precisely our result.
This is rather nontrivial in light of a general argument
[13] that the Casimir energy should be —2/R for matter
central charge 26: Evidently the general argument is
inapplicable because the ground-state vertex operator is
dressed with a power of 8+X 8 —X.

As another check consider the first excited states with
one right mover, E a —~Ik, k;0). The L~ condition is
E v =0, where v" =Re" /a+ak" +P,ae j/R. This has.

x (8 X 8 X' —D 'i)"'8 X 8 X)e~, —(2o)

with (12) '~
y = —(49 —D) ' + (2S —D) '~ (0. This is a

(1,1) tensor and thus can be consistently added to the
Liouville Lagrangian. Why is it not usually considered?
It has four derivatives and so is nonrenormalizable, but in

an eA'ective theory such as we are considering this would

D —
1 solutions, but i" is null as a result of the Lp

=Lp=1 condition, so the solution E"=v" is null, leaving
D —2 physical oscillations. Actually, this result and the
generalization to all mass levels follows immediately once
the central charge of the Virasoro algebra is known to be
26.

Presumably this procedure can be continued to find
higher-order corrections to the action, stress tensor, and
spectrum. The first corrections to the action (9) are of
order R " and are of three types: (i) order-a P terms
required for classical conformal invariance; (ii) order-a P
terms required for quantum conformal invariance; (iii)
terms independent of P but proportional to new free pa-
rameters. One new parameter, of order 0, is the co-
efficient in the original action (2) of the extrinsic curva-
ture term, the first classical correction to the Nambu-
Goto action [14]. This term is therefore less important
for long strings than the O(R ) effect from the mea-
sure.

It is interesting to make contact with the Liouville
theory. If we introduce an intrinsic metric on the world
sheet, we should obtain a conformal field theory with
Liouville field p. How might this difl'er from that ob-
tained by DDK? Consider in the ordinary Liou ville

theory the operator

J'= —),(e x„a x„—D-'q„, a x a+x)
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not exclude it. Also, it couples the Liouville field to the
X". One might have hoped that these would remain
decoupled, but we see no physical reason to expect this.
Adding L' to the action produces in the long string the
effective Liouville potential A. R erp/4, which grows in the
direction of negative p. Combined with the usual Liou-
ville potential which grows with positive p, the Louiville
field is massive and drops out of the low-energy theory.
Of course L' is one of an infinite number of new terms
which can appear, but the conclusions remain the same.
Integrating out III leaves a theory with only A'", which is

the same theory that we have arrived at above [15].
For the hope that QCD can be exactly reformulated as

a string theory, our results are useful but not necessarily
encouraging. We now understand the low-energy limit of
the world-sheet field theory. But this low-energy limit
could result from one of many diAerent short-distance
field theories, or from no two-dimensional field theory at
all. If the short-distance dynamics is described by a two-
dimensional field theory, this would be from the space-
time point of view a string theory. It may be productive
to take the point of view of a two-dimensional physicist,
who has found the analog of pion theory, a nonrenormal-
izable low-energy theory with the correct symmetries and
degrees of freedom, and who is trying to find the right
short-distance theory.
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