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Use of Model Solutions in Random Sequential Adsorption on a Lattice
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We consider random sequential adsorption on a lattice. We use analytical results on the Bethe lattice
and cactus as references to develop systematic perturbationlike expansions which are very rapidly con-
vergent. The latter produces the jamming density of a square lattice with an accuracy within 10
This expansion is based on both physical and mathematical considerations and is not restricted to ran-
dom sequential adsorption.

PACS numbers: 05.50.+q, 02.50.+s, 02.60.+y, 68. I O.Jy

(l) Introduction A.—number of processes in the physi-
cal, chemical, and biological sciences can be modeled by
random sequential adsorption (RSA) on a lattice. In the
prototypical version of this model, hard objects arriving
randomly at sites of a lattice are irreversibly adsorbed un-
less they are in the exclusion zone of previously adsorbed
objects, in which case they leave and try again. In spite
of considerable eA'ort, analytical results are sparse and
largely confined to one-dimensional systems [1-3] or lat-
tices with tree properties [4,5]. Various hierarchies have
been developed for both continuous [6] and discrete [4,7]
systems, but they seem more useful for uncontrolled ap-
proximations than as systematic evaluation procedures.

Two rather diAerent approaches to systematic evalua-
tion have been studied. The first, which has been carried
out extensively, involves the selection of a suitable expan-
sion parameter, typically the time, and the corresponding
development of a power-series expansion. Primitive ex-
pansions tend to converge very poorly, and so are used,
after modest convergence-accelerating transformations,
to construct Pade approximants. Judged by comparison
with numerical simulations, the results achieved this way
in Refs. [8] and [9] attest to the reliability of the meth-
ods. The second method has been only brieAy mentioned,
but is at the heart of this paper. It takes advantage of in-

creasingly sophisticated exactly solved models to incorpo-
rate series information, and thus relies also upon the
physics of the situation being studied, rather than solely
upon general mathematical convergence procedures. In
summary, we first review very brieAy the expansions de-
rived by Evans [10] and Dickman, Wang, and Jensen [9],
and then quote our previous results on Bethe lattices. We
use these results in two diAerent ways to develop the par-
ticle coverage on these lattices and conclude by extending
our reference systems for triangular and square lattices to
the corresponding cacti, producing very rapidly conver-
gent estimates.

(2) Brief review According to .—Evans [10] and Dick-
man, Wang, and Jensen [9], if one considers a RSA pro-
cess on an initially empty translation-invariant lattice
with nearest-neighbor exclusion, the average density
(coverage) in suitably scaled time has the expansion

I —[1+( (2.3)

For a general D-dimensional cubic lattice, one can argue
that (2.2) does indeed converge for x =1, but very slowly,
even for D =2. However, the Bethe-lattice results should
be reasonable estimates if the local structure of the lattice
is "close" enough to that of the Bethe lattice. The
justification of close is not entirely clear. Roughly, we
can consider how many steps L one needs to form a loop,
with L =~ for a Bethe lattice. For triangular, square,
and honeycomb lattices, one has L=3, 4, and 6, respec-
tively. Comparisons of asymptotic coverage (by comput-
er simulation) between these three and the corresponding
Bethe lattices are provided in Table I. Although the
direction of the deviation from Bethe to regular lattices is
not uniform, the size of the deviation shows that honey-
comb, with q =3, L =6, is smallest, in agreement with the
above argument.

(3) Bethe lattice ref-erence. —There are many options

TABLE 1. Asymptotic coverage, p(~).
Lattice

type

Triangular
Square
Honeycomb

Coordination
number q

Loop
size L

Regular
lattice

0.231 "'

0.364 "

0.380

Bethe
lattice

0.276
0.333
0.375

where S(k) is the number of paths, starting at 0, with k
further sites, each a repeat or a nearest neighbor of a pre-
vious site. By rearranging terms, (2.1) can be trans-
formed into [5]

p(t) =N(1 —e '),
(2.2)

( I)k —
I

N(x) = g N, ,x',
k&

where Nk counts the subset of walks of S(k) in which no
repeats of previous sites are permitted.

It was shown that (2.2) is convergent for a one-
dimensional lattice, for two-row square ladders, and also
for a Bethe lattice of coordination number q providing
that ~x~ ( I/(q —2) [5]. In the latter case, the analytic
result is [5]

1)k —
I

p(t) = g S(k —1)t', (2.1) "'Reference [11l.
"Reference [12].
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k Ni, /(k+ I )!
TABLE II. Series expansion for p(~) on a square lattice.

pa pi;

0
1

2
3

5

6
7
8
9

10
ll
12
13

1

2
4
7.333

12.53
20.22
31.10
45.95
65 ~ 54
90.68

122. 1

160.5
206.5
260.3

2
0
0
1.3333

—1.6
1.1556
0.6984

—3.0524
4.5346

—3.3194
—1.2978

7.8651
—12.4173

10.0714

2
0

—1.3333
0.6667
0.6667

—0.8667
—0.0857

0.6877
—0.1947
—0.5273

0.3966
0.3294

—0.5410

1

—
1

6.666 67(—I )
1.666 67 (—1)

—0.4
—4.44444( —2)

2.095 24(—I )
2.460 32(—2)

—1.094 36 (—1)
—7.239 86(—3)

9.252 61 (—2)
5.623 78 (—2)

—1.323 77 (—2)
—2.622 43 (—2)

0.3333
0.3333
0.3333
0.3846
0.3171
0.3714
0.3910
0.1743
0.4176
0.3182
0.1557
0.4463
0.6613
0.4279

0.3333
0.3333
0.4010
0.3677
0.3508
0.3696
0.3718
0.3590
0.3617
0.3700
0.3640
0.3604
0.3662

0.569 334
0.245 193
0.368 222
0.385 734
0.361 806
0.360 293
0.364 355
0.364 627
0.363 939
0.363 913
0.364 102
0.364 213
0.364 205
0.364 195

for accelerating convergence of the series (2.2). Perhaps
the most directly motivated from a reference-model point
of view is as follows. We have observed that although the
direct power expansion of (2.3) does not converge at
x = I (t =~) it can be rewritten as

[I —2N( )] " "'=1+(q—2)x, (3.1)
a series which truncates at the second term. This sug-
gests that if we expand

[I —2N(x)] '& ""= I+ g a& ~x" (3.2)
I. = I

for a regular lattice of coordination number q, the higher
coefficients in the power series should decrease more rap-
idly, so that fewer are required for a given accuracy. We
have carried out (3.2) for the square lattice, obtaining the
al, for k ~ 13 from the Nt, (k ~ 13) [131. Table II lists
the Nj, /(k+ I)t, the corresponding at, , and the cumula-
tives of the resulting expansion at x=1. It is seen that
the size of the coeScients has been greatly compressed;
the fourteenth term in (3.2) is only a few percent of that
in (2.2). p(~) in the former is, at this stage, no place
near the correct result, while the latter remains within 0.2
of it. The huge reduction of the coe%cients seems to in-
dicate that some sort of diagram reduction is taking
place, but the apparently random sign of al, shows that
expressing this incisively will not be an easy task.

There is a nominally minor change one can make in the
above procedure which further improves convergence.
We notice that for the Bethe lattice,

N'(x) ~ "=1+(q —2)x,
and correspondingly write

(3.3)

1678

N'(x) t" )t't=l+ g b x (3.4)
k=l

If the bI, decrease in magnitude about as rapidly as the
aq, then the integration required to produce N(x) from
N'(x) will certainly smooth out the oscillations and ac-
celerate convergence. According to Table II, this is cer-
tainly the case. It is clear from these two examples that
application of Occam s razor is eAective: The solution of

TABLE III. The comparison of NI, for a triangular lattice.

Regular

1

6
48

468
5328

Bethe

1

6
60

840
15 120

Cactus

1

6
54

648
9720

1

1

1.25
1.7949
2.8378

1

1

1.125
1 ~ 3846
1.8243

the reference system leaves us very little choice as to how
to organize the series calculation. With the confidence
thus engendered, we can now proceed to even better
reference systems.

(4) Cactus reference The m.
—ore closely the reference

lattices mimic the local structure of the lattice under con-
sideration, the more accurate its prediction should be,
and the more eff'ective the expansions directed by its
structure. Exact analysis of RSA on lattices of increasing
connectivity is not trivial. But we may start with an in-
stance in which it is surprisingly feasible, that of a tri-
angular cactus, a cactus in which three triangles meet at
each vertex. For a cactus, the meaning of "close" is even
more nebulous than for a Bethe lattice. We simply look
at the deviation of the string of WI, 's from those of the
real lattice measured by computing the ratio of the two.
These deviations increase with k in both cases, but con-
siderably more slowly for the cactus [see Table III, where

7p (y, ) is the ratio of the Nt, 's between Bethe (cactus)
and regular lattices].

It is an easy exercise to show that for a triangular
cactus, Nt/N& i =3(k+1), so that [5]

N(x) =x/(I+3x) . (4.1)
On the one hand, this yields p(~) =0.25, which accord-
ing to Table I is a substantial improvement over the
Bethe-lattice result. On the other hand, adopting the
improved strategy of Sec. 3, we observe that N'(x)
= (1+3x),and correspondingly choose

t2 = I+ (4.2)
k=]
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TABLE IV. Series expansion for p(~) on a triangular lat-

tice.

N, /(i +1)!
3
8

19.5
44.4

3
1.5

—1.5
0.375

0.25
0.2191
0.2349
0.2316

as our model expansion. Doing so, we find (Table IV) a
greatly accelerated convergence, leading rapidly to the
computer-simulation result.

In a square cactus, two squares meet at each vertex
(Fig. 1). The ratio of the Nt's is calculated and shown in

Table V with, again, a more slowly increasing deviation
for the cactus, and we might anticipate that use of such a
model as reference would be extremely eA'ective at ac-
celerating convergence. The square cactus can also be
solved exactly; the solution, which requires a certain
amount of eAort, is carried out in the Appendix and
yields

N(x) = —,
' —( —', y+ —„' y'),

(4.3)
I I

x =3 dy'/(2y' + I ) .

A first observation is that here p(~) =N(1) =0.3507, a
substantial improvement over the Bethe-lattice result. A
second observation is that since N is already a truncated
power series in y, Occam's razor dictates that the regular
square lattice be expanded in y as well, instead of x.
There is just one snag: The power series for x(y) does
not converge in the region (2 'i, l) so that it makes
more sense to expand in z = I —y. In other words, we
write

(4.4)
x =3 dz'/[1 +2(1 —z') ],

and fit the ei,- from the known coe%cients Ng. Conver-
gence to p(~) (see last column, Table II) is extremely
rapid, and suggests that p(~) =0.36420(+ I), a small
correction to the simulation result [0.36413(+ I )] [111.

Encouraged by the square cactus as a reference system
for the square lattice, we also carried out in a very similar

FIG. 1. Part of a square cactus. The diAerent size of squares
serves plotting convenience.

fashion the cubic cactus model of a cubic lattice. The re-
sulting p(~) =0.30569 is indeed already very close to the
cubic-lattice simulation result, p(~) =0.304(+ I ) [91.
It seems to us that the simulation results in all three cases
may be a little bit lower than they should be.

Remarks. —We have introduced a technique for the
solution of RSA models, which we believe is of much
more general utility. It organizes perturbationlike calcu-
lations according to both physical and mathematical con-
siderations. The general idea is to first seek a variable in

terms of which some function of the solution of a solvable
reference is represented by a low-order polynomial. A
systematic expansion of the same function for the "per-
turbed" system in terms of the same variable would then
be expected to converge very rapidly, depending upon
how close the solvable system is to the real one. Of
course, the prescription is not unique and becomes even
less so if the physics depends upon too many relevant
variables. This method is not restricted to RSA. We
have recently extended it to the equilibrium Ising model
as well and will report on this in a future publication.

We are very grateful to R. Dickman and I. Jensen for
providing the data of NI,- on square lattice and to G.
Zhang for observing Eq. (A3), both of which are essen-
tial to this work. This work was supported in part by
grants from NSF and DOE.

Appendix: RSA on a square cactus We let n; be .—the
number of squares with i sites occupied, k the total num-
ber of occupied sites (with nearest-neighbor occupancy

TABLE V. The comparison of JVI, for a square lattice.

Regular

4
24

176
1 504

14 560
15 6768

Bethe

1

4
24

192
1 920

23 040
322 560

Cactus

1

4
24

184
1712

18688
233888

1

1

1

1.0909
1.2766
1.5824
2.0576

1

1

1

1.0455
1.1383
1.2835
1.4919

1679



VOLUME 67, NUMBER 13 PH YSICAL REVIEW LETTERS 23 SEPTEMBER 1991

dynamics). One sees by induction that

4 4

gn; =i+ I, gin; =2k

(so that ni —2=n3+2n4 is maintained). Now define

Nk (ni, .n2, n3) =N(ni, n2, n3, n4) (A2)

as the number of "walks" specified by jn;}. It is easily
seen by induction that [14]

N(n i, nq, n3, n4) =2n iN(n i, n2 —l, n3, n4) +2(n2+ I )N(n i
—l, n2+ l, n3 —l, n4)

+ (n3+ I )N(n i
—l, n2, n3+ I, n4 —I )+6„, 26„,p6„, p6„, p.

Introducing the generating function

(A3)

1)k+1
N(xi, x2, X3,X) = g

n1=2 n234 0

(A3) im plies th at

Nk (Il i n2 Il3)X i X2 X3 X (A4)

k+1 x2 k+1 x3

where the j } are the same as that in (A4). It follows that

(As)

t] t)+2x lx2 +2x lx3 +x i

t]x Xi t)x l t)x 3

N= DN =x i, —N(x |,X2, X3,0) =0. (A6)

Now Dx =1, and Dci =0 for j =1,2, 3, where

t 1

c i =x2 x3 q c2 x ] 2c ix3 3 X3, C3 x+ dy/(C2+ 2C ly+ 3 y (A7)

so that if

N(xi x2 x3,x) =N(ci, cq, c3,X) with x3 x3(c/ c2 c3 x) (Ag)

then

dN/dx =X| = (c2+ 2c ix3+ q x3 ) = (c2+2cix3+ 3 x3 )dx3/dx .

Hence

f 1

N =(c2X3+cix3+ 6 x3) (C2x3+clx3+ —,
' x3), where J dy/(cq+2ciy+ —,

'
y ) =c3. (A9)

X3

At x 1
=x2 =x3 = I, we have c i =0, c2 = —, , c3 =x, and so N(x) =N(1, I, l,x) =N(0, —, ,x,x) = —, (I —x3) + —„(I—x3 ),

1.e.,

I

N(x) l q x3 6 x3 where dy/( —,
' + —', y ) =x

N X3
(A10)

"' Also at Department of Physics, New York University,
New York, NY l0003.
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