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Protein Folding Bottlenecks: A Lattice Monte Carlo Simulation
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Results of Monte Carlo simulations of folding of a model "protein, " which is a freely joined 27-

monomer chain on a simple cubic lattice with nearest-neighbor interactions, are reported. All compact
self-avoiding conformations of this chain have been enumerated, and the conformation ("native") corre-
sponding to the global minimum of energy is known for each sequence. Only one out of thirty sequences
folds and finds the global minimum. For this sequence, the folding process has a two-stage character,
with a rapid noncooperative compactization followed by a slower transition over a free-energy barrier to
the global minimum. The evolutionary implications of the results are discussed.

PACS numbers: 87.15.—v, 02.50.+s, 05.50.+q

The determination of the mechanism by which proteins
fold to their native three-dimensional structure is one of
the most challenging unsolved problems of molecular
biophysics. It is not clear whether the native structure is
determined thermodynamically or kinetically (i.e., wheth-
er the native structure of a protein is the global energy
minimum), although the former appears more likely from
the wide range of conditions under which the same native
structure is obtained. Levinthal [1] argued that the as-
tronomically large number of conformations available to
a polypeptide chain make it impossible to find the global
minimum by a random search in the conformation space.
Various possibilities have been considered to simplify the
folding process. In one model [2] the restriction arises
from the role of secondary structural elements in deter-
mining folding pathways. Alternatively, certain lattice
[3] or more detailed model [4,5] simulations of protein
folding have introduced a bias in the allowed conforma-
tions (e.g. , higher turn probabilities in the positions found
to have turns in the native state) which guarantee folding
to the native structure. In cases where such bias was not
introduced, simulations [6,7] often ended up with dif-
ferent structures at diAerent runs.

In this paper we take a diA'erent approach. We consid-
er a protein model in which the native conformations are
determined by nonlocal interactions without assuming
any intrinsic propensities for local order. A 27-monomer
chain on a simple cubic lattice with nearest-neighbor in-
teractions is used [8]. The conformational space of this
chain includes all extended conformations, as well as
the subset of fully compact self-avoiding conformations
(CSA, Fig. I); the latter have been fully enumerated and
analyzed for certain sets of interactions numerically [8]
and arialytically [9]. A range of sequences is examined
and Monte Carlo (MC) simulations are used to deter-
mine which, if any, sequences are able to fold. The se-
quence parameters are chosen so that in every case a sin-

gle CSA conformation is thermodynamically dominant
below a transition temperature. A key point of this ap-
proach is that for each sequence the conformation of
lowest energy is known so that we may determine wheth-
er the folding process reaches the global minimum.

The model is a 27-monomer freely jointed chain with
unit bond length on a simple cubic lattice. Monomers are
positioned on lattice sites. Each configuration can be de-
scribed by a set of positions of the monomers, r;. In the
simulation, which consists of a random walk with unit
steps, all possible conformations, including those which
are noncompact or have more than one monomer in a
site, are allowed. The latter takes account of the in-

herently greater Aexibility of a real protein chain and
avoids topological constraints which significantly slow
down the kinetics of folding [10].

The energy of a chain with N monomers has the form
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Here the nearest-neighbor Kronecker delta 4 equals 1 if
rj —r; =1 and is 0 otherwise; the site Kronecker delta 6
equals 1 if r; —rj =0 and is 0 otherwise. The first term in

Eq. (1) represents a mean attraction (Bp(0) between
monomers occupying neighboring sites that leads to com-
pactization of the chain [11]. The second term is
"sequence specific. " We generate a given sequence by
selecting the 8;~ from a random distribution with zero

FIG. 1. An example of CSA on a 3x 3x 3 fragment of a cu-
bic lattice (fat line).
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mean; i.e.,

P(B;~)=.(2pB ) ' exp( —B~j~/2B ), (2)

with sequence neighbors), and the overlap Q with the
lowest-energy conformation; the quantity Q is defined as

where 8 is the standard variance which determines the
heterogeneity of the sequence. As mentioned in the intro-
duction, the thermodynamic behavior of heteropolymers
with such interactions, which correspond to the "random"
energy model, can be determined [8,9]. The last two
terms in Eq. (1) introduce energetic penalties for confor-
mations in which two and three links occupy the same
site. Thus, although such conformations are allowed in

the kinetics of folding, the values of D2 and D3 lead to
very low thermodynamic probabilities and the ground
state is a self-avoiding configuration. The dynamics of a
chain was simulated by the standard Metropolis algo-
rithm [12], using the kinetic scheme of Verdier [13]. A
monomer with position r; on the lattice is picked at ran-
dom and is moved to another position r that is allowed

by the polymeric bonds; i.e., r =r; —~+r;+~ —r;. Accep-
tance of the new structure is determined by using the en-

ergy expression [Eq. (1)] in the Metropolis algorithm
[12]. Overall, about 1% of the moves were accepted in

the compact conformations and about 70% were accepted
in coil conformation.

The folding of thirty sequences, characterized by sets
of B;~ generated with the distribution in Eq. (2), was ex-
amined. Each run for a given sequence started from an
initial conformation that corresponded to an extended
(coil) state with random numbers specifying the position
of each unit on the lattice. From some preliminary stud-
ies, the parameters were taken to be Bp= —2, B=l,
D2=10, and D3=14; all quantities are in units of kBT
with kz =1. These values yield a unique CSA ground
state below the transition temperature with the Boltz-
mann probability of this state very close to 1. The tem-
perature T in most runs was set equal to unity; however,
for certain cases a range of temperatures (T= 1-5) was
investigated.

Of the thirty sequences which were examined, only
three were able to fold to the conformation of the known

global minimum and only one exhibited stable and rapid
folding to this state, independent of the initial coil con-
figuration. The one "folding" sequence required between
5 x 10 to 5 & 10 MC steps to find the global minimum;
test runs extending up to 5 X 10 steps were unsuccessful
for the other sequences. The energy of the global mini-
mum of the folding sequence is Ep= —82.05; the other
sequences had Ep values in the range —83.72 to —74.61.
We describe first the analysis of the folding sequence and
then examine how its potential surface diAers from that
of the other sequences.

For the folding sequence, fifty simulations were made
and all reached the global minimum. To characterize the
folding process as a function of the number of Monte
Carlo steps, we consider the energy E, the number of
nonlocal contacts C (i.e., the contacts other than those

Q =+common/+total ~ (3)
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FIG. 2. The MC time evolution of (a) number of nonlocal
contacts in the chain and (b) overlap with the ground state for
a typical run. The number of nonlocal contacts in CSA is 28.

where N„,„ is the number of nonlocal contacts which
are the same as in the "native" structure, and N t,&„. I

=28,
the number of contacts in any fully compact self-avoiding
conformation.

A universal feature of the folding process is that it
occurs in two stages (see Fig. 2). There is a rapid com-
pactization (—10 MC steps) in which the number of
contacts and energy reach (75-90)% of the values at the
global minimum followed by a slow search through the
compact conformations for the global minimum. In the
rapid compactization process the overlap parameter Q
reaches values in the range 0.2-0.4. Then Q fluctuates
within this range for a long time (10 —10 MC steps),
before it finally reaches the native state (Q =1).

The chain does not encounter significant barriers in the
compactization process. To demonstrate this we con-
struct a histogram of the probability of the number of
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FIG. 3. Histogram for the number of contacts observed in

simulations at temperature T =3.0.

contacts observed in the course of simulations. The histo-
gram constructed at the temperature which is the mid-
point of the transition (T=3, Fig. 3) is shown. The most
important feature of this histogram is that it is not bimo-
dal; i.e., there is no density (number of contacts) range
that corresponds to a free-energy maximum. Thus, the
compactization transition is not first order, which is in ac-
cord with the theoretical prediction that the coil-globule
transition in heteropolymers is second order [9,11]. The
bimodality at T=1 corresponds to the second transition
connected with the search for the ground state (see
below).

The search for the ground state is the second stage of
folding. It occurs within compact or nearly compact
states. In the plot of Q versus the number of MC steps il-
lustrated for a typical run in Fig. 2(b), the chain remains
in the space of compact "misfolded" states for a relatively
long time (—10 MC steps) until it suddenly jumps
((10 MC steps) to a more nearly native configuration
(Q —0.8), before it finally reaches the ground state. In
36 out of the 50 trials, an intermediate which is a CSA
conformation with Q =0.753 and E = —81.02 was en-
countered before the native state. In the remaining runs,
the second stage (( 10 MC steps) involved a direct
transition from Q —0.2-0.4 to Q=1. In any case there
was no unique pathway in a mechanistic sense as a se-
quence of atomic-scale events. In contrast to the com-
pactization transition, there are significant free-energy
barriers separating the various species, e.g. , the regions

Q —0.5-0.7 and Q —0.8-0.9 have low probability. Such
a first-order transition for formation of a well-defined
structure was predicted in analytical investigation of the
behavior of random heteropolymers [9].

That the formation of the ground state at equilibrium
involves a first-order transition has kinetic implications;
i.e., since there are two thermodynamic states separated
by a free-energy barrier, there must be a transition re-

gion. Nuclei with Q=0.6 form the transition state; they
have somewhat different structures in the various runs
[14]. Sometimes the nucleus dissolves and it takes more
time to form a new nucleus from which the ground state
is attained.

The most important result is that of thirty sequences
examined, only one was able to reach the global
minimum in a finite time. Further, this folding sequence
did so consistently, independent of the initial conditions.
Thus, although the model has a conformation space that
exhibits the Levinthal paradox (the total number of con-
formations of a chain is 6 = 10 ), certain sequences
can find the global minimum in 10 —10 MC steps during
which the chain explores only a negligible fraction
(= 10 ' ) of the total conformation space. The system
also searched only a negligibly small fraction of the com-
pact states. This suggests that, even if the native confor-
rnation is a free-energy minimum, there may be a re-
quirement that the conformation be accessible kinetically
in a reasonable time. Thus, in addition to selecting se-
quences in terms of the thermodynamic requirements for
a unique global minimum [15], evolution may also have
to select sequences in terms of the kinetic requirements
for folding. One possibility of such a selection was sug-
gested in [16] where an intrinsic propensity for each
monomer to be in native conformation was assumed. It
was shown in [17] that under these assumptions the ki-
netics of folding to the special free-energy minimum may
be fast.

To examine the difference between this sequence and
other sequences which did fold in the course of simula-
tion, we examine the free-energy landscape. It has been
shown that a typical free-energy surface of a random
heteropolymer corresponds to a "rugged" landscape; i.e.,
there are many deep minima with structures significantly
different from the native state separated by high barriers
[9]. The multiple-minima character of the conformation-
al space of a protein was observed experimentally [18]. A
useful measure of the ruggedness of the configuration
space of a protein is provided by the function

P(g) =X~(gi~ Q)I ~p~, - (4)
kk'

where Ql, & is the overlap [Eq. (3)] between conforma-
tions k and k'. This function characterizes how low-

energy conformations differ structurally; it was calculated
analytically for a random heteropolymer in [9]. The
summation in Eq. (4) is taken over all conformations, and

pk =exp( —Ei, /kgT)//Z is the thermal probability for the
chain to be in conformation k at a temperature T, Fk is
the energy of a chain in conformation k, and Z is the par-
tition function of the chain. The "typical" P(Q) for a
random heteropolymer is bimodal with peaks at Q=l
and Q&(1 [9]. Since the search for the native conforma-
tion involves the compact configurations (see above), we
evaluated P(Q) for the CSA conformations using the
method developed in Ref. [6]. Figures 4(a) and 4(b), re-
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(a) cally close (it is only lkT higher in energy than the
ground state). This conformation was often observed as a
kinetic intermediate in the second stage of folding before
the polymer chain reached the ground state.

It remains to be answered how special the "kinetically
folding" sequences are and what fraction of random se-
quences [15) would meet both the thermodynamic and ki-
netic requirements of folding. Structural as well as ener-
getic analyses of the diAerence between folding and non-
folding sequences should help to elucidate this problem.

We would like to thank O. B. Ptitsyn and P. G.
Wolynes for fruitful discussions. This work was support-
ed in part by grants from the National Institutes of
Health and the National Science Foundation.
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FIG. 4. Plots of function P(Q) [Eq. (4)] at T= 1. (a) Typi-
cal "not-folding sequence" and (b) "folding sequence. "

spectively, show P(Q) for a particular sequence that does
not fold and for the folding sequence. The configuration
space of the "nonfolding" sequence is typical of that for a
random heteropolymer. It is rugged with conformations
close to the ground state in energy (i.e., highly probable
conformations) very diferent from it structurally. In the
process of folding these incorrect conformations serve as
"traps" for the chain; i.e. , they correspond to deep local
minima which in the conformation space are far from the
ground state and separated from it by high barriers. By
contrast, the configuration space of the folding sequence
[Fig. 4(b)] is much smoother. The peak at 0.7 (Q (0.8
corresponds to the CSA conformation which is structural-
ly close to the ground state (it has 22 contacts in common
with the ground state out of a total of 28) and energeti-
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