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Fluctuations of a Stationary Nonequilibrium Interface
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We study properties of interfaces between stationary phases of the two-dimensional discrete-time
Toom model (north-east-center majority vote with small noise): phases not described by equilibrium
Gibbs ensembles. Fluctuations in the interface maintained by mixed boundary conditions grow with dis-
tance much slower than in equilibrium systems; they have exponents close to 4 or —,', depending on sym-

metry, rather than —, , and have long-range correlations reminiscent of self-organized critical behavior.
Approximate theories reproduce this behavior qualitatively and lead to novel nonlinear partial
diAerential equations for the asymptotic profile.

PACS numbers: 05.40.+j, 68.35.—p

There is much current interest in dynamical models
that do not satisfy the condition of detailed balance
[1-3]. In this Letter we report on the statistical proper-
ties of interfaces between stationary states of such sys-
tems as they occur in the Toom model [4].

The Toom model consists of Ising spins (a; I = +' I ) lo-
cated on a square lattice. At each time step, all spins are
simultaneously updated: cr;, (t+1) becomes equal to the
majority of itself and of its northern and eastern neigh-
bors at time t with probability 1 —p —

q, to +1 with
probability p, and to —1 with probability q. Nonzero p
and q represent the eA'ect of noise; p&q introduces a bias.
It has been proved by Toom that for p and q sufficiently
small, but otherwise unrestricted, two phases exist, in
which the spins are predominantly +1 or —1, respective-
ly; see also Ref. [5].

Our main interest in this Letter is the nature of fluc-
tuations in the stationary interface separating the two
phases. Since information travels southwest, we consider
the Toom model in the third quadrant only and impose
boundary conditions at the north and east: We require
spins along the negative x axis to be +1 and along the
negative y axis to be —

1 at all times. At low (but
nonzero) noise level the system establishes a unique
steady state in the long-time limit, in which a fairly well-
defined interface making some angle o. with the x axis
separates the + phase in the upper portion of the
quadrant from the —phase in the lower portion; see Fig.
1. We refer to this interface as anchored, since it is
pinned at the origin.

To understand the behavior of this interface we consid-
er first the time-dependent behavior of a straight inter-
face dividing the whole plane. At zero noise, such an in-
terface, which makes an angle 0 with the x axis, is sta-
tionary if 8 C [O, tr/2], and moves to the southwest with
constant velocity if 8 C [tr/2, tt]. At low noise level, simu-
lations and heuristic reasoning show that the interface
remains Hat on a macroscopic scale and has a velocity
v(8) which is generically nonzero except at some angle
Oo. The dependence of Oo (which equals the angle a
defined above) on p and q will be determined in the next

section; for p =q, Oo=tr/4 by symmetry and U(8) is an
odd function of 8 —tr/4. This fact will play an important
role in distinguishing the fluctuations in the symmetric
and biased cases in the Kardar-Parisi-Zhang (KPZ) ap-
proach [6], to be discussed in Sec. (3) after we consider
more specific models for the Toom interface in Secs. (1)
and (2).

(I) Low noise-approximation To s.—tudy the anchored
interface we first note that any stairlike interface con-
figuration starting at the origin and directed along
( —1, —1) is invariant for the zero-noise dynamics. If at
nonzero noise one starts with such a configuration C, then
most fluctuations (for example, a —spin in a sea of +
spins) have a short lifetime and the system returns quick-
ly to C. However, if a positive (negative) spin directly
west of a vertical (south of a horizontal) portion of the
interface flips, then the system will jump rapidly to
another zero-noise configuration via the deterministic
part of the Toom dynamics. This leads in a suitable limit
of low noise to an eAective "solid-on-solid"-type model in
which only stairlike interfaces occur [7]. The interface is
then represented by a one-dimensional system of Ising
spins S„=+1, n =1,2, . . . , with S„=+1 ( —1) if the
nth link along the interface is vertical (horizontal). Since
we have no a priori measure on this interface, we must
compute the stationary state of the one-dimensional mod-
el under the inherited dynamics: Each spin is updated in-
dependently in such a way that, during a time dt, a +
( —) spin is exchanged with the first —(+) spin to its
right with probability q dt (p dt).

The height of the interface at a distance L from the
origin (measured in number of links) relative to a straight
line with inclination tr/4 is given by Mt. =g~ S;. We are
interested in the large-L behavior of the averages (ML)
and (ML) in the steady state of the one-dimensional
semi-infinite system: These give, respectively, the asymp-
totic average angle through tana = (1 —p)/(1+ p), p
=limL L '(Mt. ), and the fluctuations about the aver-
age.

The semi-infinite system has a very unusual property
reflecting the behavior of the Toom model in the third
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FIG. 1. Mean-square fluctuations in system magnetization
Typical anchored Toom interface configuration for p =0.008, q

Lengt. h n

for X =1 and X = —,', with collective-variable approximations. Inset:
=0.032.

quadrant: There are no finite-size eAects. Specifically, if
we restrict our attention to the subsystem 1 ~ n ~ L and
define the dynamics so that a + (—) spin with no spin of
opposite sign to the right is simply fiipped with probabili-
ty q dt (p dt ), then the dynamics of the subsystem is iden-
tical to the dynamics induced from the L =~ system, as
long as that system contains an infinite number of spins
of both signs. This permits in theory the exact calcula-
tion of any correlation function; in practice, however, this
does not help much in obtaining rigorous results about
Ml when L&&1. The lack of finite-size eA'ects does help
greatly with the computer simulations, as does the fact
that the relaxation time for a system of size I may be
shown to be proportional to L [7].

On the other hand, we can easily determine the steady
state on a ring with periodic boundary conditions; in this
case, a spin exchanges with the first spin of opposite sign

in a counterclockwise direction, and in the steady state
for any fixed total magnetization pL (which is conserved
on the ring) every spin configuration has equal weight
[7]. Letting the size of the ring go to infinity gives for the
model on the infinite line a stationary state which is just a
product measure with (S~) =p for all j. This state corre-
sponds to an interface at an inclination 8 =tan ' (1
—p)/(I+p). Its normal velocity v(e) may be computed

through the formula v(0) =J(p)/[2(1+p )] ', where
the "current" J(p) is defined as the number of + spins
less the number of —spins crossing any bond per unit
time. An easy computation gives [7] J(p) =2[q(1+p)
—p ( I —p ) ']/(I —p ').

It is reasonable to assume, and computer simulations
confirm, that the stationary state of the semi-infinite sys-
tem approaches, far from the origin, a product measure
with average magnetization p determined by setting J(p)
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equal to zero. This yields (Mt )=pL with p =(I —WX)/
(I+JX), where X =q/p, and tana =JX.

The asymptotic behavior of the steady-state measure
suggests, at first sight, that we should have (Mt )
—(Mt ) —L " with v= —,

' . This, however, turns out to
be wrong due to the very slow approach of the stationary
state to its asymptotic independence, a fact reminiscent of
generic nonequilibrium or self-organized critical behavior
[I]. This leads to a great suppression of the IIuctuations
as seen in Fig. 1, where we show the results of Monte
Carlo simulations for two values of k. The results for sys-
tems of sizes of 65 536 and 16384 sites, respectively, indi-
cate v=0.265 if X=1 and v=0.285 if X= 4. We shall
discuss later two approximate treatments which suggest
that v =

4 for X =1 and v = —,
' for X&1.

To get an analytic handle on the measure we consider
the stationarity conditions obtained by choosing some
function +(S) of the spin configuration S= [S~, . . . , SL]
and setting d(+)/dt =0. For simplicity, we consider here
only the unbiased case =1. Since our primary interest
is in the growth of (M„), we take @ to be a function of
the magnetization M„and argue as follows: During
a time dt, M„remains unchanged with probability
1
—K„dt and M„becomes M„—2S„with probability

K„dt, where K„ is the number of successive spins directly
preceding S„(including S„ itself) which have the same
sign as S„. Therefore, stationarity requires that for arbi-
trary functions +(m)

(K„[e(M„,+s„)—~(M„,—s„)])=0,

= —,
' (S„(2—K„,)M„,)+ —,

' (2 —K„,), (2)

where the left-hand side is just (M„)—(M„—1). Now, in

the product measure, the first terms on the right-hand
and left-hand sides of (2) vanish while the second term
on the right is of order 2 '. Hence our steady state can
approach a product measure only very slowly. In fact,
computer simulations [7] give (S„S„,)—c—,/Jn for
n »1. They, as well as some approximate analysis based
on the stationary conditions d(s;S~)/dt =0, also indicate
that there is an asymptotic scaling (S„s„,) = —(I/
J12trn )exp[ —j /12n] for n» I.

(2) Collective variable -approximation —The .steady
state of our system will of course satisfy many stationari-
ty relations other than (I). In this section we construct
an approximate measure (the collective variable -mea-
sure) on which we impose only the relations (I) but for
which we make the strong simplifying assumption (we
can actually get away with considerably less [7]) that the
expectation of S„+],given all the previous spins, depends
only on their sum M„:

(s„+)!s|,. . . , s„)=(s„+|!M.). (3)

This is in spirit a mean-field approximation since only the
collective variable M„matters.

Our starting point is the recursive equation for the
probability W'„(m) that M„=m,

where we have written M, =M„—~+S„. For +(M)
=M, this becomes (K„S„M„—1) =0 or, using K, = I

+ (I +s„s„,)K„,/2,

2(S„M„—|)+I

W„(m) = —, [1+H„(m —I)]W„(m —I)+ —,
' [I H„(m+1)]—W„(m+ I), (4)

where H„(m)—= (S„+1!M„=m). Equations (1) and (4), together with the assumption (3), lead (after some manipula-
tion) to the recursion relations

H„(m ) = [U„(m + 1 ) —U„(m —I )]/[U„(m + I ) +U„(m —I ) + 2 W„(m ) ] (5)

and

U„+ ~ (m ) = [W„(m ) +U„(m + I ) ] [W„(m ) + U„(m —I ) ]/[U„(m + 1 ) + U„(m —I ) +2 W„(m )], (6)

where

U„(m)—:( 2 (I+S„)K„!M„=m+1)W„(m+ I) =( —, (1 —S„)K„!M„=m—1)W„(m —1), (7)

with the second equality in (7) a consequence of (1).
Equations (3), (5), and (6) and their counterparts for the
biased case, X&1, determine H, U, and 8' recursively.
This approximation is compared in Fig. 1 with the results
of the Monte Carlo simulations. We see that the agree-
ment is rather good, particularly in the unbiased case.
The figures suggest, and the scaling relations discussed
below confirm, that the asymptotic value of the exponent
v in the collective-variable approximation is 4 for A, =1
and 3 for k=1.

Sealing relations. —For large n the recursive relations

!
(3) and (5)-(7) can be approximated by continuum par-
tial diA'erential equations [7]. For the unbiased case
W„(m) =w(n, m/n 't ), where w(t, x) satisfies

tI, w = ——„' tI„'[wti,'(Inw)] .

Equation (8) has the Gaussian scaling solution

Wo(t, x) = [2tro(t)] ' exp[ —x /2o'(t)], cr(t) =v 3t/2.
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It implies (ML)= J3L/2, which agrees reasonably well

with the numerical data. In the biased case [7] the scal-
ing form W„(m) =w(n, (m p—n)/n' ) yields

a, w =l C[-', a,'w —a„[w -'(a.~)']I, (io)

with C=Jk/[I+ JQ . The physically relevant scaling
solution of (10) is iv(t, x) =t '

g (t ' x) with

cAil —(16mC) 't y], if y ( ( —16mC) 'i zo,

(»)
0, if y) ( —16mC)' zo,

where zo is the largest zero (zo (0) of the Airy function
Ai.

(3) The KPZ approach —In th. is section we develop a
coarse-grained description of the interface dynamics us-

ing the method of Kardar, Parisi, and Zhang [6] (cf. also
Ref. [8]). Starting with a straight interface in the plane
we assume that, after some suitable local averaging, the
interface at time t can be described by a single-valued
function h(t, x), where x is the coordinate along a refer-
ence line. If v (ti, h) denotes the interface velocity normal
to the reference line, then on a macroscopic scale the
motion of the interface is governed by the equation

v2=0) and we neglect the marginal cubic nonlinearity.
We find then (h (x)) 't =x't, so that the exponent is

]v= 4 as before. In the general case we argue heuristical-
ly as follows: The coefficient vi in (13) is such that exci-
tations along the interface travel outwards from the ori-
gin. Thus excitation growth in time as t' leads to excita-
tions at position x of order x', through the identification
x = v [t. The argument again gives v =

& for the unbiased
model and predicts v= —,

'
in the biased (v2&0) case. The

situation is in contrast to that in equilibrium Ising mod-
els, for which the interface velocity vanishes for any in-
clination and excitations on an interface have no transla-
tional velocity; in such models, interface fluctuations are
characterized by v= —, .
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t), h(t, x) =v(tl h(t, x)) . (12)

To include fluctuation eAects the KPZ approach is to add
noise and dissipation to (12) and to expand v up to the
relevant order. This yields

+ —,
' v, (a, l )'+Da,'l +W~g, (i3)

where g(t, x) is normalized white noise. Simple power

counting shows that higher-order nonlinearities are ir-

relevant on a large scale; the cubic nonlinearity scales as
noise and dissipation and is thus marginal.

We first consider the time-dependent broadening of a
static (vo=0) infinite straight interface. The presence of
a quadratic term in (13) (vq~0) is known to lead to an

interface which broadens in time as t ' [6]. Simulations,
or the low-noise approximation to the velocity mentioned
earlier, indicate that in the Toom model the only static
interface with vq =0 is the one at angle tr/4 in the un-

biased case (p=q); there v2=0 by symmetry. For this
interface the cubic term in (13) should be taken into ac-
count, but we do not at present know how to compute its
eff'ect. Neglecting this term leads to a linear theory in

which the interface broadens as t 't [7].
The anchored interface is described by stationary solu-

tions h(x) of (13), defined for x) 0 and satisfying the
boundary conditions h(0) =0. We can solve this problem
only in the linear case, that is, when p =q (and thus
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