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Magnetic Phase Transition of Ultrathin Fe Films on Ag(111)
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High-quality, single-crystalline films of Fe(110)/Ag(111) were grown by molecular-beam epitaxy in

the range of —1-3 monolayers of Fe, and investigated in situ by means of the surface magneto-optic
Kerr effect. The magnetization exhibits a second-order phase transition at a thickness-dependent Curie
temperature. The value of the critical exponent P of 0. 137 0.008 is in good agreement with that of the
two-dimensional Ising model.

PACS numbers: 75.40.Cx, 05.70.Jk, 75.70.Ak

The investigation of two-dimensional (2D) magnetic
systems has attracted great attention in recent years [1].
One of the most important topics concerns the critical be-
havior at the phase transition. While it is well known
that for an isotropic 2D Heisenberg model [2] ordering
occurs at 0 K, the introduction of anisotropy into the
problem permits finite-temperature ordering to occur [3].
As the thickness of a ferromagnetic film is reduced, a de-
crease in the Curie temperature T~ is expected. It is gen-
erally accepted that the system undergoes a second-order
transition at T~ and that the magnetization M follows a
universal power law: M =Ma(I —T/Tr ) ', where P, is
the critical exponent. Theory predicts that the critical
exponent P„will take on a value that depends on the
universality class, and that in 2D P,. is —„',—,', and

„
for

two-, three-, and four-state Potts models, respectively [4].
The two-state Potts model is better known as the famous
Ising model [5]. It also is known that four-, five-, and
six-state clock models exhibit Ising transitions [6]. Other
2D possibilities that have been explored include the iso-
tropic XY model, which has a Kosterlitz-Thouless transi-
tion [7], and the XY model with cubic anisotropy [8],
which has a nonuniversal exponent that depends on the
strength of the anisotropy.

Experimental investigations of 2D magnetic overlayers
have benefited from the development of molecular-beam
epitaxy (MBE), which permits atomic-scale control of
the growth of high-quality, single crystals. Various mea-
surement techniques [9] have been applied to study 2D
phase transitions, and, as anticipated, reduced T~ values
compared with the corresponding bulk value have been
reported [10-12]. However, experimental determinations
of the effective critical exponent P have produced contro-
versial results. For example, the Fe(100)/Pd(100) [12]
and V(100)/Ag(100) [13] systems yield P values of —„',
while Fe(100)/Au(100) [11], Tb(0001)/W(110) [13],
and Ni(111)/Cu(111) [14] yield values of 0.22, 0.35, and
0.24, respectively. The latter values are significantly out-
side the range of expectation, unless they are nonuniver-
sal and/or not characteristic of the 2D critical region.
Further controversy stems from conAicting reports that
V/Ag(100) is not magnetic [15], and that Fe/Au(100)
has interdiffusional problems [16] that alter the magni-
tude and direction of the surface magnetic anisotropy.

Also, transition-metal substrates oAer the additional com-
plexity of strong d-band hybridization across the inter-
face. For Fe/Pd(100) this leads to significant induced
moments on the interfacial Pd [17]. While the transition
for Fe/Pd(100) remains Ising class [12], the role of the
magnetic Pd layer in the phase transition is a relatively
unexplored problem in statistical mechanics. Clearly, the
experimental situation requires further study with a prop-
er choice of system. We use the Fe(110)/Ag(111) sys-
tem because it has the following advantages: (i) Fe and
Ag are immiscible, which inhibits alloying and inter-
diffusion at the interface, and yields a thermally reversi-
ble magnetization; (ii) the d electrons of Fe hybridize
weakly with the sp valence electrons of Ag [18], so that
ultrathin films of Fe on Ag form an almost ideal 2D fer-
romagnetic system; and (iii) the system is relatively well
studied in the literature [19,20].

First we present the results of the growth and charac-
terization of Fe(110) on Ag(111). We then report on the
temperature dependence of the magnetization and the
thickness dependence of T~ in the range of 1-3 mono-
layers (ML) Fe, based on surface magneto-optic Kerr-
effect (SMOKE) measurements. We find that (i)
Fe(110) grows epitaxially on Ag(111) in a layer-by-layer
fashion; (ii) in the monolayer range, the Tr value of
Fe(110) on Ag(111) is significantly reduced compared to
the bulk value; (iii) the magnetization shows a second-
order phase transition at T~ and obeys the expected
power law with an effective P value of 0.137~0.008,
which is close to the value of —„' for the 2D Ising model.

The Fe(110)/Ag(111) films were prepared by MBE in

a new ultrahigh vacuum (UHV) chamber of base pres-
sure 1 x 10 ' Torr. The system is equipped with reAec-
tion high-energy electron diffraction (RHEED), low-

energy electron diffraction (LEED), Auger spectroscopy
using a hemispherical analyzer with a mean radius of 140
mm, Ar-ion sputtering, and a split-coil, UHV-compatible
superconducting magnet. Cleaved mica serves as the
starting substrate for film growth. The mica was ul-
trasonically cleaned in methanol, introduced into UHV,
and annealed at 700 K for 12 h. A Ag(111) base layer
was then deposited onto the mica from a Ag foil in an
alumina crucible. The mica was held at 450 K during
deposition and the deposition rate was —0.5 A/min.
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3% tail of our data. This value lies in the same range es-
timated for Fe/Au(100) [11]. Furthermore, the fact that
the film thickness is much smaller than g, implies that
the phase transition is two dimensional. Figure 7 shows
a log-log plot of the remanent Kerr intensity versus 1—T/Tc. The slope of the straight line is used to define
the effective P value. The average value for the three
films is 0.137 0.008, and the individual determinations
yield 0.139~ 0.006, 0.139~ 0.004, and 0.130+ 0.003 for
the 1.8-, 1.9-, and 2.0-ML films whose fitted Tq values
are 338.1, 450.5, and 466.4 K, respectively. The relative
thickness independence of P compared to Tc- re[]ects the
universality of P which comes from the dimensionality of
the system. Our P value is in the range expected theoreti-
cally for 2D phase transitions, and is very close to the 2D
Ising value of —„.The very slight enhancement of P over

may be a consequence of the finite-size eAect, since
any rounding of M vs T near T~ could increase the value
of P [22]. We tested the sensitivity of our P value to the
temperature interval used in the fitting procedure. If
we limit the range to within only 5% of T&, only half
the points are retained in the fit, but we still obtain
P =0.133+'0.008. The reason that the transition for
Fe(110)/Ag(111) is Ising class is that Fe(110) has only
twofold rotational symmetry in the plane of the film, and
the in-plane surface magnetic anisotropy, as analyzed by
Gradmann, Korecki, and Wailer [24], yields two-state
switching. The in-plane surface anisotropy, however, is
expected to vanish, to second order in M, if the system
possesses greater than twofold rotational symmetry [24].
This may help explain why Ising behavior was not
observed in Refs. [13] and [14], while it is observed for
systems with perpendicular spin orientations, like Fe/
Pd(100) [12].

In summary, we have successfully grown Fe(110)/
Ag(111) films by MBE. RHEED, LEED, and Auger
characterizations reveal that our films are high-quality,
single crystals with only atomic-scale roughness. The
SMOKE technique was applied in situ to study the mag-
netic phase transition in the Fe thickness range of 1-3
ML. We found that the magnetization of Fe undergoes
a 2D second-order phase transition with thickness-
dependent T~ values that are significantly reduced from
the bulk value. The effective magnetization exponent P is
0.137+ 0.008, in good agreement with the theoretical
value of the critical exponent P, of —„' predicted by the 2D

Ising model.
The work was supported by U.S. Department of Ener-
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