
VOLUME 67 8 JULY 1991 NUMBER 2

Universal Noninteger "Ground-State Degeneracy" in Critical Quantum Systems
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One-dimensional critical quantum systems have a universal, intensive "ground-state degeneracy, "
g,

which depends on the universality class of the boundary conditions, and is in general noninteger. This is
calculated, using the conjectured boundary conditions corresponding to a multichannel Kondo impurity,
and shown to agree with Bethe-ansatz results. g is argued to decrease under renormalization from a less
stable to a more stable critical point and plays a role in boundary critical phenomena quite analogous to
that played by c, the conformal anomaly, in the bulk case.

PACS numbers: 05.30.—d, 75.20.Hr

The logarithm of the partition function lnZ for a one-
dimensional quantum critical system is well known [1] to
contain a universal term lnZ =(tt/6v)(l/p)c, where v is
the velocity of "light, " l is the length, P =1/T the inverse
temperature, and c is the conformal anomaly parameter
which depends on the universality class. This formula is
valid when l»vP. There is one other term which could
appear in lnZ, in the large l limit, without violating scale
invariance, namely, a constant, length-independent zero-
temperature entropy, S(0) =lng, where g is the "ground-
state degeneracy. " Since this term does not depend on
length, it is natural to expect that it is associated with the
boundaries of the system, i.e., g=g[g2, where the two
factors arise from the two boundaries. For periodic
boundary conditions g must be 1 since there eff'ectively is
no boundary, but that need not be true in general. For
any finite l the ground-state degeneracy must be an in-

teger, since the spectrum is discrete. However, in the
l ~ limit, when the spectrum is continuous, g can be
noninteger. Indeed, in this limit, g is determined by the
asymptotic spectrum at large quantum number n, where
the energy levels take the form E=vntr/I (n integer).
The asymptotic degeneracy takes the form

D(n) (g/2) (c/6n ) 'I exp(2trdcn/6)

and there is no a priori reason for g to be integer. Stan-
dard finite-size-scaling hypotheses imply that all cor-

rections to S(T) (both extensive and intensive), coming
from irrelevant operators, vanish with higher powers of T,
so that c and g should both be universal. (We gave a
brief discussion of finite-size scaling in the presence of
boundaries elsewhere [2].) Branches of excitations sepa-
rated by a gap, h„ from the ground state should make ex-
ponentially small contributions to S of O(exp( 4/T) ). —

As Cardy has emphasized [3], a conformally invariant
boundary condition must correspond to a boundary state
since we can interchange the role of space and imaginary
time (see Fig. 1), and so the partition function becomes
Zgtt=(A~exp[ —(l/v)Hp]~B&. Here Hp is the Hamil-
tonian with periodic boundary conditions (on an interval
of length Pv) and ~A), ~B& are the boundary states. Now
taking the limit I» pv, this becomes Z~tt (A ~0)
&&exp[ —(I/v)Eel(O~B), where ~0) is the ground state of
Hp and Eo is the ground-state energy. Thus the degen-

FIG. 1. The space-time is periodic in one direction and has
boundary conditions or boundary states at the ends.
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cracy (for each boundary) is gA =(O~A). (The phase of
~0) can be chosen such that (O~A) is real and positive for
all boundary states, ~A).)

A third way of looking at g occurs in a two-di-
mensional classical statistical critical system defined on a
long strip (of length I and width P) with nontrivial
boundary conditions at the ends of the strip. The free en-

ergy produced by the boundary is of the form pfB= —lnZB =/3f o
—lng, where the free energy per unit

length fo is not universal but the length-independent term
lng is.

g can be conveniently calculated from the integers,
n&z, specifying the low-temperature partition function for
given boundary conditions ~A) and ~B):

ZAB =Tr exp( PHAB
—) =g nABg, [exp( —v&rP/I ) ] .

Here g, is the character of the ath conformal tower:

g, [exp( —v&rP/I)] =e' P'&"'tr, e

where Lo is a generator of the Virasoro algebra.
The limit Pv/I 0 can be conveniently expressed in

terms of the matrix 5, representing a modular transfor-
mation on the characters:

g, [exp( —v&rP/I)] =QS,'gB [exp( —4&rl/vP)] .
b

Taking the limit Pv/I 0 on the right-hand side of Eq.
(1), only the ground state contributes, so

ZAB gnABS, go[exp( —4&rl/vp )]

—exp(&rlc/6vP) gnA'BS,'.
Thus we see that

gA gB ZnABS

The consistency of this formula with gA =(O~A) puts cer-
tain constraints on the possible boundary states ~A) and
on the parameters n', as argued by Cardy.

As a first simple example, we consider the two-di-
mensional Ising model at its critical point. There are two
conformally invariant boundary conditions, free or fixed.
Cardy has calculated the corresponding boundary states
and these give g =1 and I/J2, respectively.

Our most important example is the Kondo eA'ect,

which may be formulated as a problem in (1+1) space-

gu(() (2 =exp(&rvP/241) g exp[ —(v&rP/l)(Q+2kn
n —oo

time dimensions. The Hamiltonian density is

t dpiaL . g dpiaR
N = lvl//L lUl//R

dx dx

+(&r/2)~&(~(x)S (yL +VR ) 2 ~a(gipL+9ipR).

Here yl and yR are left- and right-moving fermions with
spin index a =1,2 and "flavor" index i =1,2, . . . , k. S is
a quantum spin operator of size s.

We treated this problem [2,4] by decomposing the fer-
mions into charge, spin, and Aavor degrees of freedom,
using a conformal embedding involving a free boson rep-
resenting charge, a level k, SU(2) Wess-Zumino-Witten
(WZW) field representing spin, and a level 2, SU(k)
field representing favor. We then hypothesized that, un-
der renormalization to the low-temperature fixed point,
the impurity spin disappears, leaving behind only a
modified, conformally invariant, boundary condition on
the charge, spin, and flavor fields. Only certain special
choices of the multiplicities, n', or equivalently of the
boundary conditions, correspond, in a simple way, to free
fermions. These choices force the two nontrivial WZW
theories to conspire together to produce trivial behavior.
Other choices of the n"s lead to nontrivial behavior, pro-
ducing, for example, fractional energy-level spacings.
These presumably correspond to "boundary conditions"
which are not local in the fermion basis. We conjectured
that the low-temperature fixed point in the Kondo prob-
lem corresponds to the set of integers n' obtained from
those corresponding to trivial boundary conditions by ap-
plying the fusion rules to add the impurity spin to the
conduction-electron conformal towers, corresponding to
the physical picture of the conduction electrons screening,
or adsorbing, the impurity. The corresponding spectrum
was in excellent agreement with that obtained from
Wilson's numerical renormalization-group approach in

the case k=2, s =
& .

Let us first calculate g for the free-fermion case
(kK =0) and vanishing boundary conditions, at both ends
as used in Refs. [2] and [4]. The partition function is
written

X n xu (I ),()zsu (2),jzsu (k),
Q.Z.P

Here @su(2) &. and @su(k) ~ are the characters of SU(2),
spin j and SU(k), representation p, respectively. gu()) (2

is the sum of characters of U(l) over all charges equal to

Q, mod2k, i.e.,

)'/4k] Q [1 —exp( v&rPm/I)l—
rn =1

The integers n~F„& ~ are the free-fermion multiplicities
found by Altschiiler, Bauer, and Itzykson [5] (ABI). In
the limit I))vP, we find

Z exp(&rlc/6vp)(1/42k ) g np„' S&,su(2)Sp, su(k)
Q~J~P

ABI show that any SU(k) representation p which ap-

162

pears together with the SU(2) representation j is ob-
tained from j by a biject&on such that

Si, (&),su(k) =J2/k S&,SU(2)

Furthermore, each SU(2) representation appears k times
[once with each of the SU(k) representations obtained
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gggn~i) =(A ~a;0)(a;0~8),
b

(2)

where a, b label conformal towers in a general field theory
and the state ~a;0) is a direct product of left and right
copies of the highest weight state in the ath tower. The

from the bijection and the action of the group center,
Z&]. Thus we find the degeneracy for free-fermion
boundary conditions, gF, is given by

I /2
g2 g gOgO

j=0
The matrix SJ~ is both unitary and real symmetric [6]:

SJJ =J2/(2+k) sin[+(2j+ 1)(2j'+ 1)/(2+k)] .

Hence, gF =1.
To calculate g at the Kondo fixed point, we simply

modify [2,4] the integers n~' ' according to the fusion
rules, i.e.,

Q.J.P —~~J, Q.J .P
KF ~ j's FF

J

where N~~, is the fusion rule coefficient [7) for the
SU(2)-level k theory, giving the number of distinct ways

that the representation j occurs in the operator product
expansion of two fields transforming according to the rep-
resentations j' and s, respectively. (s is the spin of the
impurity. ) We now have "Kondo" boundary conditions
at one end and free fermion ones at the other. Hence we

find

g)r =(I/42k ) X nKF'SJ, su(z)g, ,su(k)
0JP

= (I/42k ) g N,', »n"S, , s( u)g2&, s (u)).
Q.J PJ

The sum over j can be done using the Uerlinde formula

[8]:

gNJ. ,S~ =SJ S, /So .
J

The remaining sum can then be done as is in the free
case, leaving

sin [z(2s + 1 )/(2+ k ) ]
goo sin [x/(2+ k ) ]

This formula agrees exactly with the degeneracy obtained
from the Bethe-ansatz solution of the Kondo problem [9].
It thus provides direct confirmation of the spectrum (i.e. ,
the boundary state) conjectured in Ref. [2] for all values

of the impurity spin s and the number of Aavors k.
U Y~ — Pd3 has been proposed as a realization of the
two-channel, s =

2 Kondo effect. Experimental measure-

ments [10] are suggestive of a zero-temperature entropy
of & ln2, as predicted by the above general formula.

We note that the Verlinde formula can also be used to
calculate arbitrary matrix elements of the Kondo state.
Cardy established the general formula

same procedure as above leads to the result

(Q,j,p;0 1K)/(0, j,p;OIF) =S,'/St) .

This formula will be very useful in calculating the corre-
lation functions for the Kondo problem [11]. [Actually,
Cardy only proved Eq. (2) assuming nondegenerate char-
acters. However, his proof can be easily extended to this
case, where the only degeneracies are those that arise
from charge-conjugation symmetry. ]

In all examples which we have studied, the degeneracy
g decreases upon Aowing between repulsive and attractive
fixed points. For instance, in the Ising model a free
boundary condition represents an unstable fixed point
upon the application of a magnetic field at the boundary
which drives the system to the fixed boundary condition.

g decreases from 1 to I/W2. In the Kondo effect, the de-
generacy at the unstable zero-coupling fixed point is sim-

ply that of the decoupled spin, namely, 2s + 1. At the
stable strong-coupling fixed point this is always reduced
to

sin[+(2s+ I )/(2+ k)]/sin[z/(2+k)] .

The multichannel fixed points in the Kondo problem are
unstable against channel asymmetries in the Kondo cou-
pling. For instance, in the two-channel case, with s = 2,
if one channel couples more strongly to the impurity than
the other then it is believed that the system crosses over
to a fixed point at which one of the channels screens the
impurity (undergoing a conventional single-channel Kon-
do effect) and the other channel is unaffected [12]. This
corresponds to g decreasing from v2 to 1. We also note
that g appears always to decrease upon taking the
infinite-length limit, compared to its finite-length (in-
teger) value (i.e., if we take T 0 for finite I, we always
obtain an integer since the spectrum is discrete, whereas
if we take 1 ~ before taking T 0, we appear to al-
ways obtain a smaller value of g, in some cases nonin-
teger). At the (symmetric) fixed point, the finite-length
ground state is the highest weight state in the conformal
tower with spin s, charge 0, and singlet Aavor representa-
tion. This is a spin-s multiplet of degeneracy 2s+1.
Again this is reduced at l

We conjecture that g always decreases under renormal-
ization from a less stable to a more stable critical point in

the same bulk universality class. A similar decrease of
the conformal anomaly, c, occurs when the bulk univer-
sality class changes. A naive argument for this decrease
is that, in both cases, as we go to 1ower-energy scales
states that appeared to be gapless may exhibit small gaps,
hence reducing c and g. A perturbative argument for this
"g theorem" can be constructed in a very similar way to
the one given in the case of c in Ref. [13]. We consider a
barely relevant boundary interaction in the Euclidean
space action, —Xfdr p(r), where the operator p has di-
mension 1 —y with 0&y« l. P has a unit-normalized
two-point function, (p(z))p(r2))=~r~ —rq~

' ~, and
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a three-point function,

(tt(r&)y(r2)y(r3))

where b is real. The P function is P yX b7. —
, with a

fixed point at k=y/b«1. We calculate lnZ perturba-
tively, expressing the result in terms of the renormalized
coupling constant, k(I), giving

]ng(k(l)) =]ng(0) —X(I) year + —', ) (I) rr b+O(k ) .

Evaluating g at the fixed point gives Bg/g = —
—,
'

rr y /b
&0.

It seems that it should be possible to construct a non-
perturbative proof of the g theorem similar to the proof of
Zamolodchikov for the c theorem [14]. However, so far,
we have been unable to find a satisfactory proof.
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