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Calculation of the Critical Exponents by a Renormalization of the Ornstein-Zernike Equation
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We calculate the critical exponents at the liquid-vapor critical point by using the classical ingredients
of the liquid-state theory. Two coupling constants are defined at a microscopic level. The closure of the
Ornstein-Zernike equation is given by the Callan-Symanzik equation from which we determine the posi-
tion of the fixed point. The role of the three-body direct correlation function is emphasized. A compar-
ison between this work and the standard theory of critical phenomena based on the Landau-Ginzburg-
Wilson Harniltonian is presented.

PACS numbers: 61.20.Gy, 05.70.—a

Experimental results show that the universality class of
a IIuid is the same as that of the Ising model [1,2] al-
though the liquid does not have the same symmetry class
as the ferromagnetism. This suggests that the existence
of a three-body correlation function does not change the
values of the critical exponents. The main goal of this
Letter is to prove this point starting from the liquid-state
theory.

The structure of a liquid formed by molecules interact-
ing via a radial pair potential is characterized by the total
correlation function h(r|2) which determines the proba-
bility of finding two molecules 1 and 2 separated by a dis-
tance r|2 [3]. In addition to h(r|2), we define c(rlq), the
direct correlation function (DCF), via the Ornstein-
Zernike (OZ) equation:

h (r|2) =c(r|2)+ h (r ~3)c(r32)dr3,

where dr3 means an integration over the spatial coordi-
nates of 3. For convenience, the density number p is in-
cluded in the definition of h(r ~2) and c(r ~i). In order to

calculate h(r ~2) we must add to Eq. (1) a closure relation
which is an approximate relation between h(rlq) and
c(r lq). Now, we know that the usual closures are
inefticient in the critical region. Recently, Reatto and
co-workers [4] proposed a new approach which combines
the ingredients of the liquid-state theory and some as-
pects of the renormalization-group theory. In this Letter,
we show that the calculation of the critical exponents at
the liquid-vapor phase transition can be performed direct-
ly from the OZ equation by using the methods of quan-
tum field theory [5,6].

The first theory of critical phenomena assumed that
c(r|2) is a short-range function compared to h(r~2) and
that all the moments of c(r|2) are well defined. Fisher
[7] showed that only the first part of this assumption is

exact. Therefore, each correlation function f (=h or c)
must be written f=f +f The func.tion f gives the
long-range behavior of f while f vanishes when r|2 is
greater than a few molecular diameters and remains a
smooth function of the thermodynamical parameters (p
and T, for example). When this splitting is introduced in

Eq. (1) we can write

h (r~2) —„h (r|3)c (r32)df3 h (I |3)e (r3$)df3 H(riq), (2)

where H(ri2) is short ranged compared to the left-hand side of Eq. (2). Since c (ri2) is really short ranged we can ex-
pand h (r ~3) as in the OZ theory [7], and we get

Khh (rip) —Mh (r )2)+~ [h (r|3)—h (r|2)]c (r3q)dr3 =H'(ri2), (3)

with M=[1 —j c(r)dr] and K=(l/2d)fr c (r)dr (d is the number of dimensions). H'(r~i), which has the same
range as H(r|2), is negligible when r|& is greater than a given length, say Ap. Instead of solving Eq. (3) with the condi-
tion (r ~2/Ap) && 1, we formally set Ap =0. After this shrinking, we consider h (r|2) given by

1 (k) =k +m + [c (k =0) —c (k)]

—dh (r )+12m h (r~p) —
J [h (r~3) —h (r~2)]e (r32)dr3 =6(r~2) . (4)

Hereafter h (r|2) differs from the one considered in Eq.
is the two-point vertex function [5]. 1 (k) is only deter-3 by a multiplicative constant, c &rp is divided by the L2, ' . mined by c (k), which we must calculate by a perturba-constant K, and m =My'K. These constants are dimen-
tion theory. Here the reference system corresponds to ansionless in the critical region. From statistical mechanics

[3] k th t 2 ( k T K) —) h
~

th approximation on c(r~q). This function, noted e&(r~2), is
defined as usually [3] but its calculation is restricted toisothermal compressibility. In Fourier space we write Eq.

(4) h~(k)rL(k) =1, where the molecules enclosed in a sphere Syl, k. j of radius k,
finite but very large, centered on 1. cA(r~2) coincides

(5) with c(r|2) if k goes to infinity. From cA(r~q) we get
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m& and I &. These quantities verify an equation similar
to Eq. (5). Moreover, we assume that cA(r~2)—(r~2) '+ with a'& 2; then cA(k) —cA(k=0) is an
increasing function of A that we can neglect if we focus
on k« I/X. It can be shown [8] that this restriction on
c&(r~2) is just the condition which avoids the existence of
long-range interactions [9]. Now, the long-range behav-
ior of I A is simply I A(k) =k +mA from which mA can
be dimensioned and m& is of order A —I/A, . By argu-
ments of continuity we can show that mA &0 [8]. For
calculating c (k) we start from its diagrammatic
definition and we use a topological reduction [10] which
allows us to introduce directly hA(k) in the perturbation
theory.

As an example of our strategy we first add one long-
range bond hA(r ~2) into the reference system as indicated
in Fig. 1. In (a) the hatched part represents the infinite
sum of graphs in which the interactions are restricted to
S(l,k). It contains cA(r~2) plus ShA(r~2), which corre-
sponds to the infinite sum of bonds in which 1 and 2 are
connected by graphs containing nodal points. When
hA(r~2) is connected in parallel on I and 2 the graph is
really new compared to those of the reference system al-
though r]q ~ A. . We can prove this point by remembering
that the OZ equation can be solved by an iterative pro-
cedure in which hq(r ~2) appears as the result of an
infinite sum of chain graphs in which the bonds are
cA(r;~ )[3]. Sinc.e the molecules i and j are not necessari-
ly inside S(I,X), the graph (a) and more generally those
shown in Fig. 1 are actually new. In (b) and (c) we in-
troduce the triplet DCF cx(1,2, i), while in (d) and (e)
we take into account the existence of nodal points be-
tween 1 and 2. Finally, in (f), (g), and (h) hA is connect-
ed to two field points. In (h) we introduce the four-body
DCF cA(1,2, 3,4). The sum of all contributions due to
the reference system will be represented by a four-body
function u4A(1, 2, 3,4) as indicated in Fig. 1. When we in-
crease the number of hA a similar construction can be

(c)

done. For instance, when I and 2 are connected by two
hA, the connection can be direct or via cA(l, i,j ) and the
sum of these two possibilities gives rise to u3A(l, i,j) as
shown in Fig. 2. More generally, the perturbation theory
requires one to know bhx(r~z), a set of n-body DCF,
cA(1, 2, . . . , n), and their integral c„A over n —

1 coordi-
nates. These last quantities can be evaluated at the criti-
cal point and moreover we can find their values c„ in the
real system.

In order to do that we use (i) the relation between the
derivative of c(1, . . . , n) relative to the density p and the
integral of c(l, . . . , n, n + I) over the coordinates of
(n+1) fl I], (ii) the definition of m in terms of gT, and
(iii) the critical isotherm p —p, —(p —p, ) (p is the pres-
sure) [2]. We get immediately c„=( —I )"(n —2)!
+a„(p—p, ) +' " with 2 ~ n. The terms of higher order
in p —p, have been neglected and a„ is a smooth function
of p and T.

In the reference system, czA [—:cA(k=0)] determines
m& =1 —c2&. The dimension of c„& can be obtained by
simple scaling arguments. For each sphere S(a,k, ) we
define a mean density pA(a) = [+8(r;, —

A, )]/co(X), where
the sum runs over all the molecules in the system, 0(r) is
the Heaviside step function, and co(k) is the volume of
S(a,k); we also define the fluctuations in density
ApA(a) =pA(a) —p, . For two spheres S(l,k, ) and
S(2,X), the function H(1, 2) =(bpA(I )hpA(2)), which
measures the correlations in the fluctuations of density,
has the same spatial variation as hA(r~2) provided
r~2&&k. If we change X into X'=sk, t)pA(a) becomes
&pA(a) =(s )ApA(a), where x (x&0) takes into ac-
count the fact that p~(a) —p„must decrease when )i, in-
creases. However, a change in X, also modifies m~ which
gives the length scale. Accordingly, the function H(1, 2)
will be unchanged if we also change r~q into rI2 =r ~2/s.

For r~2&&k, hA(r)p) =(r~2) and we get x
=(d —2)/2. Since A, is very large p~(a) is weakly depen-
dent on a and pA(a) =pA, finally pz —p, —A i . The
density number pA deviates from p, as a consequence of
the correlations which persist beyond A,. From this result
and the relation between the DCF we find that
c„q=( 1)n(n 2)1+& A

—n( — )/+ with 2~ n. g„o
is dimensionless. Clearly, in the perturbation theory we
only consider the values of n for which c„A is finite, i.e.,
n ~ 2d/(d —2).

(h)

FIG. l. Introduction of one long-range bond hA into the
reference system. hA is represented by a line while the hatched
parts in (a)-(h) are defined in the text. On the left-hand side,
the hatched part corresponds to the function u4A(l, 2, 3,4).

FIG. 2. Introduction of two long-range bonds hA in the per-
turbation theory. On the left-hand side, the hatched parts cor-
respond to the functions u &(l,3i,j) and uiA(2, i,j)
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Now, we can calculate the dimension of other quanti-
ties defined above. The integral of u3A(1, 2, 3) over the
coordinates of 2 and 3, noted u 3A is immediately

g3 OA . The dimension of u4A results from the
graphs given in Fig. l. In Bh&(r~2), all the points being
located inside S(l,k), we assume that its range is smaller
than (r|2);consequently its integral is of the order
A-' with y) —2. After a large cancellation between
three- and four-body DCF, the leading term is

g40A . The graph in which 1 and 2 are related by
three long-range bonds in parallel introduces a four-body
function for which the diagrammatic structure is diA'erent

from u4~(1, 2, 3,4), but we can prove [8] that the leading
term is again g4 OA

" . More generally, we can calcu-
late the dimension of u„A. Since u„A is finite when
n (2d/(d —2) we introduce a new shrinking in the dis-
tances. When focusing on very large distances we for-
mally set k =0, and we replace u 3A(1, 2, 3) and
u4&(1, 2, 3,4) by new vertices u» and u4A of weight

g3 OA and g4 OA, but now A goes to infinity.
Now, a graph contains hA bonds and vertices defined at a
microscopic level (g30A "I and g40A ' are, re-
spectively, the limit of c3A+1 and c4A —2 when A goes to
zero). g3Q and g40 play the role of the bare coupling
constants in the standard theory. The integration over hA

leads to the evaluation of the Feynman integrals for
which the calculation is well known [5,6]. To each graph
G of c(1,2, . . . , n) we associate a superficial degree of
divergence A(G) which tells us what the behavior of
these integrals is for very large values of A. We know
that [6]

as in the p theory [6]; we have

2 '
A 3

g4 =g4A — +
16~2

A
g4A

p

A
ln —+

p
(7)

Equation (6) also shows that the expansion of u3 contains
one u3A and an arbitrary number of u4A. It is easy to
show that

i (2+t)/2
A

g3 =g3A
p

' (2+v)/2
1 A+ 2g3A16+2 p

A A
g4A ln + '''

p p

(8)

8 rl+p3(g3.g4 e)
Inp

The expansion of c (k) which corresponds to n =2 re-
quires us to calculate the same graphs as in the p theory
plus some graphs containing u 3A. The first one with u 3A

is shown in Fig. 2. It has a term diverging as In(A/p)
which contributes to m (k =0); its k dependence, which
has a finite limit when A goes to infinity, can be included
in the definition of Z. Now, g3 has no explicit contribu-
tion to I (k) which keeps the same form as in the P
theory. To calculate the fixed point we use the so-called
Callan-Symanzik equation which expresses the indepen-
dence of I t, (k) on the renormalization point [5]. Here,
this equation takes the form [6]

(G) =g N„, [m (d —2)/2 —d] —n (d —2)/2+ d, (6) +p4(g4, e)
g4

—y(g3, g4, e) I '(k) =0.
where N„, is the number of m-point vertices and the sum
runs over all values of m. We must retain the graphs for
which Q(G) &0 [6]. The graphs in Fig. 1 represent the
first step in the perturbation theory. From its infrared
behavior we deduce the critical dimension d„[6]. Hence,
the existence of a three body correlati-on function does
not change d, , which remains d, =4 [8,12]. The condi-
tion n (2d, /(d, —2) implies that we only have to study
the DCF for n =2, 3, and 4.

Now, the perturbation theory gives c (k) in terms of
I A(k), u3A, u4~, and d=4 —e. The corresponding vertex
function I b(k) contains ultraviolet divergences that we
absorb in the definition of renormalized quantities (m, u3,
and u4) and in a scale factor Z=I (k)/I t, (k). At the
critical point the cancellation of m induces some infrared
divergences and we must introduce an arbitrary "mass
parameter" p which characterizes the renormalization
points [5].

First, u3A and u4A must be replaced by the renormal-
ized quantities u 3 and u4 that we write in terms of dimen-
sionless coupling constant u3 =g3p +' and u4=g4p'.
The analysis of Eq. (6) shows that the insertion of any
u 3A in the expansion of u 4 leads to a converging term that
we can drop. Then u4 has formally the same expansion

1600

The functions p3 and p4 are defined by p3 =dg3/d lnp and
p4=dg4/dlnp, while y=d lnZ/ding; in these derivatives
g3A g4A and A are kept fixed. Equation (9) will repro-
duce the simple scaling behavior if the coupling constants
g3 and g4 reach the values g3 and g4 such that any fur-
ther change in the scale of the momenta does not afreet
them. This stable fixed point is the solution of the equa-
tions P3(g3,g4, e) =0 and P4(g4, e) =0. Since g4 obeys
the same equation as in the p theory we have
g4 = —", tr e. From Eq. (8) we get P3= —g3[(6 —d)/2—(I/16tr )g4] which leads to g3 =0. Hence, the stable
fixed point corresponds to g4 = '3' n c and g3 =0.

By using the classical arguments [5,6] we deduce from
Eq. (9) that I (k) =k " with q=@(g3,g4, e) =y(g4,
e). Accordingly, g has the same value as in the
theory, ti =e /54. Since other critical exponents are cal-
culated at the fixed point for which g3 =0, we conclude
that the liquid-vapor critical point has the same critical
exponents as those of the Ising model Thus, in the.
liquid state p or c3 does not modify the value of the criti-
cal exponents. However, we cannot conclude that c3 does
not participate in the universal critical behavior. In our
calculation the functions u3A and u4A which introduce the
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coupling constants are defined at a microscopic level and
their dimensions result from 1

—c2~—A and the relation
between the DCF. The existence of c3A produces some
cancellations in u4~ which lead to u4~ =g4AA . Such a
result cannot be obtained in the standard theory where
the various coefticients which appear in the Hamiltonian
are considered as independent phenomenological quanti-
ties. We may elucidate the role of c3 by considering the
system at 1„=4 for which g3 =g4 =0. Then, as in the
mean-field approach, an analytical expansion in terms of
p —p, can be expected for all thermodynamics quantities.
From the results given above, n & 2d, /(d„—2) in order to
get a finite value for c„A, while c„ finite requires n & 6+ 1.

At 1=d,. the reference system must be identical to the
real one; this leads to 8=(d, +2)/(d„—2) =3 as expect-
ed [2]. From the relation between c2 and gT we get
(1 —c2)~ T —(p —p, ) —g~, where g~ is the correlation
length. From the relation between c2 and c3 we get
(cz+c3)p, T„p—

p, —
g~ '. These results show the gen-

eral dependence of c2 and c3 upon the correlation length.
At a given value of p, . it is assumed [2,6] that the correla-
tion length (q varies as (T —T, )'t, . leading to (1—c2)~ T —T —T, and (cq+c3)p T (2 (T Tr) '

In addition, from the results established above we know
that (I+c3)~ T =0 while (2+c4)~ r is a constant and
then the equation of state can be written as

p(p, T) —p(p„T) =a~(T —T, )(p —p, )+a2(T —T, ) 't (p —p, ) +a3(p —p, ) (10)

where the coefficients a ~, aq, and a3 are only functions of
p, and T, . The second term on the right-hand side of
(10) which is determined by c3 does not exist in the ex-
pansion proposed by Fisher [7]; it also disappears in the
standard p theory due to symmetry arguments. From
Eq. (10) we can calculate the critical exponent P. Its
value is the classical one P = —, but all three terms in (10)
have the same importance in the calculation. Thus, at
d, =4 the DCF and their relations play a similar role as
in the case d(4 where the fluctuations must be con-
sidered and the full calculation is needed.

In this Letter, new results have been obtained at two
diAerent levels. First, we have shown that the critical ex-
ponents can be calculated from the ingredients of the
liquid-state theory without any explicit reference to the
Landau-Ginzburg-Wilson Hamiltonian. Here, it is the
DCF and its relations which play the main role. The clo-
sure of the OZ equation is then given by the Callan-
Symanzik equation. This represents a new approach
which clarifies some aspects of the standard theory. The
calculations presented here can be easily extended to
more general situations as for instance the case of mix-
tures [8] or continuum percolation [12]. Second, we have

analyzed the role played by the three-body correlation
function which is ignored in the standard theory. We
have shown that this function participates in the critical
behavior without changing the values of the critical ex-
ponents which remain those of the Ising model.
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