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Morphology and Rate of Fracture in Chemical Decomposition of Solids
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Self-fracturing of solids during chemical transformations is considered, and a first quantitative model
of this widespread phenomenon is proposed. The analysis begins by considering the equilibrium of a sin-
gle crack, and proceeds with the behavior of an ensemble of cracks. This enables one to solve the “selec-
tion problem” for this pattern-formation process and obtain formulas for the rate of crack-network prop-

agation and for the diameter of the resulting blocks.

PACS numbers: 62.20.Mk, 05.40.+j, 82.20.—w

Pattern-formation studies, investigating how patterns
emerge from a structureless environment, often focus on
the growth processes [1,2]. Progress has been made in
understanding crystal growth in solidification, diffusion-
limited aggregation, viscous fingering in a Hele-Shaw
cell, etc. Studies of important aspects of these problems
are still under way [3]. Here we consider the widespread
and somewhat opposite phenomena of solid-state decom -
position, involving the fracturing of initially dense ma-
terial. As with pattern-formation problems, the central
question is the following: What physical characteristics
of the originally homogeneous system prescribe the mor-
phology and rate of propagation of the crack network?

Cracking patterns in nonequilibrium solids, recently
considered as fractals [4-6], have long been of interest:
Lord Rayleigh reported [7] fracture during gelatine film
solidification. The diversity of crack networks in paints,
drying mud, and in some geological objects is well known
[8]. The chemistry of solids also provides a broad range
of cases [9-12] in which cracking plays a key role:
Chemical transformation causes internal stresses and
numerous cracks, i.e., juvenile surfaces, which then may
promote the reaction. This attractive scheme (cases of
both positive [13] and negative [14] feedback) even gave
rise to curious Daedalus inventions [13,14], but it remains
a challenge for quantitative theory.

The simplest type of reaction, often complicated by
fragmentation, is thermal decomposition of solids. As a
result of a temperature increase, solid material loses some
relatively volatile component, (4B)glia— Asolid + Bgas, SO
that shrinkage and misfit of specific volumes causes frac-
ture. Optical observations demonstrate a distinct propa-
gating front between the unbroken solid and a grainy
product of reaction [9-12]. This propagation is deter-
mined by the interplay of three fields: the concentration
of the mobile atoms c¢(x), the internal stress tensor o(x),
and some crack-network characteristic, like the average
crack surface per unit volume 1/L(x). Rigorous mathe-
matical treatment of such a problem is hopelessly com-
plex, but reasonable physical assumptions enable one to
simplify and solve it, as is shown below.

The progress of the front is limited by the transport of
atoms B from the bulk of the crystal to the exterior [Fig.
1(a)]. Deep within the crystal these atoms move through
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simple diffusion. As they approach the front, they en-
counter cracks which allows easier passage. Eventually
they arrive at the region of decomposed material from
which their exit is quite rapid. To create a tractable “sol-
vent loss” model, we assume that transport occurs in two
stages. Until solvent atoms arrive at the propagating
boundary, they diffuse, with diffusion constant D. Once
at the border, they leave the crystal at a rate kcp, where
¢y is the boundary concentration of solvent atoms. It is
further assumed that ahead of the moving boundary are
numerous cracks of typical length L which are the pre-
cursors of the front. They set the typical length scale of
broken blocks once the front passes, but do not them-
selves strongly influence the transport of solvent. The
calculation proceeds in two stages. First, we will find the
condition for a precursor crack to be in equilibrium.
Next, we will find the spatial dependence of the concen-
tration of solvent atoms, assuming the front travels at ve-
locity v. Putting these two results together, with an addi-
tional dynamic assumption, completes the problem.

A single crack segment, adjacent to the topological
border of the material, is affected by two factors: Elastic
forces resulting from material shrinkage tend to open the
crack, while molecular cohesion hinders crack growth.
Since the diffusion is much slower than the unstable
crack advance, we consider the crack in a state of
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FIG. 1. Network of cracks propagating toward the interior
of (a) the solid and (b) the corresponding concentration profile.

© 1991 The American Physical Society



VOLUME 67, NUMBER 12

PHYSICAL REVIEW LETTERS

16 SEPTEMBER 1991

quasiequilibrium, where the tensile stress o(x) is bal-
anced by the material toughness. In traditional terms of
fracture mechanics [15-17] this means that stress intensi-
ty factor K (representing the weighted sum of the open-
ing forces along the crack) takes the threshold value K,
1/2

L (x)d
j:) (ngx2§|/2 =K.. (D

This balance corresponds to the extremum of a free-
energy functional F(L), which is more instructive from a
physical point of view. A positive contribution to F(L) is
related to the new surface formation characterized by the
work of fracture 2a. (Here a is the Gibbs surface tension
for purely brittle fracture, when no irreversible processes
take place.) A negative contribution to F(L) is stress re-
laxation and, due to Irwin [15,16], the related ‘“‘energy
release rate” dF/dL=—K?*(1—v?)/Y represents the
elastic Lagrangian force acting on the crack. Using (1)
and integrating over the crack length from zero to L we
obtain
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FIG. 2. Balance diagram for the brittle crack segment, cor-
responding to Eq. (6). Elastic opening force as a function of di-
mensionless crack length A=(v/D)L is represented by the
curves. The upper curve corresponds to the use of Eq. (4) for
the concentration profile, while its linear approximation results
in the lower curve. The material cohesion term does not depend
on the crack length (horizontal lines).
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F(L) is thus bilinear with respect to the stress field, and
is reminiscent of the formulation [18] of free energy as a
functional of the crack separation (offset field). Compar-
ing Eq. (2) with Eq. (1) one can express K, through more
physical parameters [15-17]: K. =[RaY/(1 —v?»)]"2

We do not take into account the curvature of the
cracks and their influence on one another. Furthermore,
we consider only the typical stress component, neglecting
the concentration inhomogeneity within the border plane.
Thus the theory of thermal stresses (in a case of “solvent
loss™ the stress is also attributed to the decrease of molar
volume proportional to the concentration changes) pro-
vides the simple local relation [19]

o(x)=pYll —c(x)], B=p/3(1—v), (3)

where B’ is the volume shrinkage coefficient. This stress
is what one should find to the right of the boundary if no
precursor cracks were present, and it gives a reasonable
estimate of the loading on the crack in Eq. (1) [20].

To estimate c(x) we consider a diffusion on the half
space x = 0 with desorption on the plane moving bound-
ary [Fig. 1(b)]l, which is by definition connected with
some (unknown) concentration value c=c;,. The steady-
state solution in the moving coordinate system is

c(x)=1—0U—cplexp(—xv/D) 4)
and mass flow continuity requires
U(l'_(‘b)—_'kc‘b. (5)

The linear approximation of Eq. (4), c(x)=¢,
+x(1 —c¢p)v/D at x < D/v, is sufficient for simple esti-

|x2—x

'2| 1/2

rmates. Substituting it into Egs. (3) and (1) one obtains

K.

3‘}‘,‘5 , (6)

1/2
v v _ o
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where the dimensionless length A =(v/D)L is introduced.
Equation (6) shows how the length of the crack depends
upon the speed of front propagation. There are typically
two real solutions A (points 4 and B in Fig. 2). The
smaller of these is unstable and a crack with this length
would grow very rapidly until A reaches the larger, stable
value. Propagating solutions are allowed for a continuous
range of values of v. At very low v, the length of the
crack diverges like v ~'% as v increases the length
shrinks, until beyond some speed v,, corresponding to the
maximum value of the right-hand side of Eq. (6), precur-
sor cracks are no longer able to propagate. Thus, instead
of a single solution we have a continuous family, posing a
“selection problem™”: What determines the particular
values of v and L observed in the fracturing process?
This situation is typical in pattern formation studies
[1,2].

Figure 3 provides equivalent representation in terms of
the free-energy functional, based on more accurate use of
Eq. (4) in Egs. (3) and (2). The free-energy surface is
plotted as a function of dimensionless crack length A and
stress-field spatial extent 8. On this diagram one can fol-
low transformation of the F(L) dependence from the in-
creasing straight line in the unloaded media (8§ =0) to the
conventional Griffith inverted parabola in case of homo-
geneous loading (§— o). There is a “peninsula of
growth” in this picture with one coast 4'C’ of mechani-
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FIG. 3. Single crack free energy as a function of crack
length and of the internal stress effective extent §=(D/
) [2YB( —¢4)/K.1?. Plot range: 0 <L <S5 in units of D/v,
0<6<2 and —0.5<F <1 in units of 2aD/v. Light spots
outline the “peninsula of growth.”

cally unstable solutions and an opposite coast B'C’ of
stable ones (cf. Fig. 2). Superficially, instead of a
definite solution we have the whole branch B'C’ of possi-
bilities. Both Figs. 3 and 2 represent single-crack behav-
ior, while we should deal with an ensemble of segments
evolving somehow within the propagating front (Fig. 1).
This allows one to elucidate the crack-size selection
mechanism.

To select the appropriate solution from the family, one
must investigate the dynamics of the decomposition front.
Certainly it cannot travel faster than v., since above this
speed there is not enough stress (or concentration deficit)
to permit precursor cracks, and the front must slow down.
The basic dynamical hypothesis of this Letter is that the
front travels in fact at v.. The logic behind this assump-
tion is that if the front travels slowly and the precursor
cracks become long, the shorter segments will rapidly
shatter the rear portions of the dense solid: that is, the
front will rapidly begin to move ahead. The only natural
velocity at which this process of acceleration can stop is
v. itself. The corresponding value is A, =x/6, as a result
of which we obtain

L =nrD/6v 7
and, from Eq. (6),

2
=A, A=

2
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Equations (7) and (8) essentially solve the problem. The
principal parameter characterizing the solutions is A. It
is most useful to examine two limiting cases. [The use of
Eq. (4), instead of its linear approximation, would change
the steady point C to C' in Fig. 2 and lead to slightly
different numerical factors. In view of this, these factors
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are omitted below.]
At A> 1 (relatively fast diffusion) we obtain

v=k?’D'3(YB/K)¥, L=(DK./kYB)*>. 9
For A1 the results from Egs. (8) and (7) are

v=D(YB/K.)?, L=(K./YB)?. (10)

Equations (9) and (10) relate self-fracturing rate and
morphology with basic parameters of the decomposing
system and deserve discussion here. One can naturally
presume Arrhenius-type temperature dependence of the
kinetic coefficients k and D. Then Egs. (9) and (10) pre-
dict two regimes with different activation energies of the
decomposition rate v, observable experimentally [11] at
different temperatures.

As to morphology (L), we see a tendency that the
closer the conditions are to equilibrium, i.e., the smaller
k, the larger are the product blocks. (There is some simi-
larity to the space correlations near the critical point of a
phase transition.) Consideration of product-layer resis-
tance to gas release, neglected before, would diminish k.
According to (9), block sizes would increase while the
product layer thickens toward the interior of the crystal
(cf. Fig. 1). At the other extreme, if kK — oo, the values
of v and L attain those given in (10). This represents the
limit of brittle fracturing, i.e., it results in the smallest
blocks. Estimating the surface energy, which determines
K., as a==Ya/10, where a is of the order of the atomic
size (as is often assumed in the literature), one obtains
roughly from Eq. (10) L=a/B"”. Thus, a significant
shrinkage may result in a rather disperse product of
decomposition (e.g., /= 10% and L =300 A in decom-
position of barium chloride hydrate [11]). This estima-
tion also fits the observations of Ref. [6], where for an
“atomic” diameter a = 3.4 um and for two-dimensional
shrinkage coefficient 8’ = 36% one finds L == 30 um.

We would like to be cautious in comments about possi-
ble self-organized criticality [21] in the fracturing-front
propagation. There is a temptation to refer to the loca-
tions of the horizontal line in Fig. 2 below, above, and
tangent to the point C as supercritical, subcritical, and
critical states, respectively. Obviously, besides the es-
timated diameter, there is some distribution of the frag-
ment dimensions; but the finite extent of the stress field
(see descending parts of the curves in Fig. 2), located in
the diffusion-depleted region, suppresses the long-tail
power-law distribution of L, inherent in self-organized
criticality phenomena [21,22]. The same local character
of loading prevents the overwhelming growth of a single
crack, which was proved to take place in a homogeneous-
ly loaded viscoelastic strip [15]. There is no contradiction
with this thoroughly analyzed [23] conclusion, because in
our case the network of cracks appears as a result of cer-
tain interplay between fracturing and diffusion.

To emphasize the pattern-formation aspect of fractur-
ing we deliberately avoided possible heterogeneity of the
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initial solid on any intrinsic length scale a (e.g., grain
size). This heterogeneity can play a prominent role, be-
ing superimposed on the picture described above, with the
results depending on the L/a ratio. In particular, for
L> a heterogeneity may lead [4,5] to some fractal di-
mension d = 2 of crack surfaces. Consequently, for small
k the sinuosity of the boundary and corresponding
enhancement of its surface area may be simply accounted
for [24] by some geometrical factor (L/a)?~? in the
right-hand side of Eq. (5). This would change the powers
in Eq. (9), which become rational functions of d, while
Eq. (10) essentially does not vary.

We realize how abstract and simplified our model of
fracture in thermal decomposition is. Still we believe that
the above considerations can provide valuable insights
into this complex and widespread phenomenon. It is use-
ful to rephrase our results in general terms of nonlinear
thermodynamics: For a solid sample of initial size much
larger than the estimated value L, chemical decomposi-
tion by trivial diffusion (thermodynamical branch [25])
necessarily results in a mechanical metastability of the
material. Decomposition proceeds with the formation of
a cracking pattern (dissipative structure [25]), whose
propagation rate v and fragment size L are given by Egs.
(9) and (10).

Enlightening discussions with B. Berne, W. Gelbart, P.
Hohenberg, R. Kohn, J. Langer, M. Paesler, H. Reiss,
and R. Scattergood are appreciated.
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