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Instability of Taylor-Couette Flow of Helium II
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We report observations of the instability of Taylor-Couette How of helium II. The results are in sub-
stantial agreement with recent calculations of Barenghi and Jones using the full modern equations of the
How of helium II. This result is the first instance of success of a linear-instability theory with the equa-
tions of helium II and is the strongest evidence available that the equations of motion and the boundary
conditions used in the analysis are correct.

PACS nurnbels: 67.40.Hf, 47.20.1 t

The study of liquid-helium Taylor-Couette fiow (fiow
of a fiuid between rotating cylinders) began in 1957 with
the stability analysis of Chandrasekhar and Donnelly [1].
They recognized the importance of the problem as a
rigorous test of the two-fiuid equations of motion [4].
The equations of motion used by Chandrasekhar and
Donnelly were not complete since the vortex tension term
was not included. Today the accepted equations are
known as H V BK after H all, Vinen, Bekarevich, and
Khalatnikov [2].

Recently Donnelly and LaMar reviewed all existing ex-
perimental and theoretical work on Taylor-Couette Aow

of helium II [3]. They noted first of all that the experi-
mental data suggest that instability in helium II occurs
when the inner or outer cylinder is rotating.

During preparation of the review, Barenghi and 3ones
[4] of the University of Newcastle upon Tyne decided to
undertake a fresh look at the stability theory using the
modern HVBK equations of motion. These equations
contain both mutual friction and vortex tension terms [4].
Barenghi and 3ones found that for the rotation of the
outer cylinder the superfluid is unstable to nonaxisym-
metric perturbations as the wave number k approaches 0.
This is in strong contrast to the classical result where the
Auid is stable to any rotation of the outer cylinder. Since
the instability sets in as It 0, the experimental results
should depend greatly on the aspect ratio and end eAects.
The situation is quite difrerent when only the inner
cylinder rotates. The first instability in the vortex array
is temperature dependent. As one approaches the lambda
point the critical Reynolds number approaches the classi-
cal value from above. As the temperature is reduced the
critical Reynolds number increases and the critical wave
number decreases. Eventually, the critical wave number
again becomes zero causing end eAects to predominate.

In addition to temperature dependence, Barenghi and
3ones found that the critical Reynolds number depends
strongly on the radius ratio of the cylinders. As the ra-
dius ratio approaches 1 both the critical Reynolds num-
ber and the wave number of the instability increase. To
facilitate comparison of results to theory we report on
measurements conducted at a radius ratio near unity (a
very narrow annulus) and at a variety of temperatures.

as in the classical case, but the superfluid flow has the
form

v,. = '

p, m =0, ~ 1, ~ 2, . . . ,
2zR]

where R
~

is the radius of the inner cylinder, tc =h/m, h is
Planck's constant, and m is the mass of the helium atom.
At higher rates of rotation, quantized vortices enter the
annulus, and the superfluid Aow becomes more complex.
It is this state of normal-fluid motion and vortex-filled
superAuid that is the base state considered in the stability
theory and which must act as a continuum state for the
theory to be valid. The number of vortices per unit area
of helium II, n, in the annulus is roughly given by the ra-
tio of the vorticity to the quantum of circulation [2],

2A
(3)

We find experimentally that (3) is obeyed above some
threshold value of 2, so the condition that a continuum of
vorticity exists for a well-defined base state is satisfied.

Since we are primarily concerned with the rotation of
the inner cylinder, we nondimensionalize the inner
cylinder angular velocity 0] with the Reynolds number
defined in the standard way as

Rei =OiRid/v», (4)

where d is the gap size and the kinematic viscosity v, is
defined as the ratio of dynamic viscosity to normal-fluid
density. Other parameters describing the system are the
radius ratio g =R~/R2 and the aspect ratio I =h/d.

Furthermore, we concentrate exclusively on inner

cylinder rotation.
There is a profound diITerence between the flow of heli-

um II in an annulus and that for a classical fluid. For a
classical Auid the base state is that of laminar Aow

v =Ar+B/r no matter how slow one rotates. Here A and

8 are functions of the angular velocities and the radii of
the cylinders. For helium II, slow rotation corresponds to
normal-Auid Aow of the form

v„=(Ar+8/r) j
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u2 Vo
(5)

where Vo is the resonance amplitude without rotation and
V is the amplitude with rotation [2]. A is the full width
at half the maximum power of the resonance and u2 is

the second-sound velocity. We were able to achieve a
resolution in V/Vo —

1 of 5&&10 which translates into a
detection of vortex core material present in a concentra-
tion of 1 part in 10 ".

The primary resonance mode used was the fundamen-
tal axial mode. The presence of an axial mode in an axi-
ally symmetric geometry was somewhat mysterious.
However, small gaps between the end caps and the outer
cylinder were left at the ends of the cylinders to allow rel-
ative rotation. We believe that the second sound was

passing through these gaps and a resonant mode was gen-
erated with a wavelength longer than twice the measured
height. This was verified by a calculation of the wave-
length from frequency and second-sound velocity data.
No other higher axial modes were detected.

The vortex array in laminar flow between infinite
cylinders is parallel to the axis of rotation. Since second
sound is attenuated only when it propagates perpendicu-
lar to the vortices, and axial mode should not detect vor-
tex lines. However, in a finite geometry the end caps of
the cylinders do not rotate with the laminar profile, creat-

Our apparatus consists of two concentric cylinders of
radii 1.9508 and 1.9982 cm. A height of h =9.436 cm
separates the end caps which rotate with the inner
cylinder. Thus we have q=0.97628 and I =199. We
have chosen these parameters to allow us to compare our
data with the theory of Barenghi and Jones.

We used second-sound resonances within the cavity to
detect the quantized vortices. The second sound is emit-
ted by an ac voltage across a resistive heater. The heater
is a 20-pm-thick Evenohm wire attached lengthwise
along the inner cylinder. The resulting temperature
waves propagate axially, azimuthally, and radially at
twice the input frequency. The second sound is detected
by a painted strip of Aquadag carbon compound 5 mm
wide and approximately 5 pm thick. This detector is also
aligned lengthwise along the inner cylinder separated
from the heater by 90 . It carries a small dc bias current
dissipating between 1 and 2 mW of power into the work-

ing fluid. The temperature fluctuations from the heater
cause corresponding resistance fluctuations which are
detected as a weak ac signal. The signal is amplified and
then transferred to the laboratory frame through slip
rings to a phase-sensitive lock-in amplifier.

The second-sound waves are attenuated primarily by
losses at the walls, and by the presence of quantized vor-
tex lines. The excess attenuation a due to the vortices is
measured by comparing the resonance amplitude of the
rotating system with that of the stationary system.

Specifically,

R(d I. d&)a*= &6v' dr
(6)
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FIG. 1. Second-sound attenuation as a function of inner
cylinder Reynolds number at T=2.10 K. The squares and tri-
angles correspond to data taken as the Reynolds number was

being stepped up and stepped down, respectively. The line is a
least-squares fit to the data.

ing vorticity with a component perpendicular to the axis
of rotation. Using the axial mode we were able to mea-
sure this vorticity and found it to be 2 or 3 times weaker
than the bulk vorticity as detected by the azimuthal reso-
nance.

We expect the transition to be marked by some defor-
mation in the vortex array configuration since the normal
fluid is changing its flow pattern. Such a deformation
would presumably be evident to both axial and azimuthal
second-second measurements. This indeed was the case.
In fact, the extra attenuation due to the deformation was
nearly the same for both resonances. However, the per-
centage change in attenuation due to the instability of the
array was greater for the axial resonant mode than for
the azimuthal. This results from the larger amount of
background attenuation in the azimuthal mode from the
many axially oriented lines. Consequently, by using the
fundamental axial mode we were able to determine the
critical Reynolds number more precisely.

The transition was revealed by a break in the slope of
attenuation as a function of Reynolds number. The break
in slope was often accompanied by a discontinuity in the
attenuation itself. Figure 1 shows data taken at 2. 1 K.
The squares represent attenuation as 0] was being step-
wise increased, and the triangles represent attenuation as
Q] was being stepwise decreased. One can see that the
transition was free of hysteresis. In fact, no hysteresis
was detected for a range of rotational accelerations span-
ning 3 orders of magnitude. By contrast, in classical
Taylor-Couette flow, there is a criterion set forth by Park,
Crawford, and Donnelly for passing through the Taylor
transition without hysteresis [5]. Namely, only when
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will the hysteresis be negligible. Because of the very
small kinematic viscosity of helium our dimensionless ac-
celerations were in all cases at least 2 orders of magni-
tude greater than the above criterion. The lack of hys-
teresis may provide an important clue in understanding
the dynamics of the superAuid transition.

The critical Reynolds number was determined by a
least-squares fit of the data in Fig. 1, letting Re,. be one
of the parameters determined by the fit. The fitting func-
tion consisted of two linear regions joined smoothly by a
step function,
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y(Re) =(a Re+b)f(Re)+ (c Re+d) [I —f(Re)],
where

1

(R —R,. )/a '

1+e
(7)

For Re & Re, , f is close to I, and for Re & Re, , f is close
to 0. The critical Reynolds number Re, . and the parame-
ters a, b, c, and d were free parameters while the sharp-
ness 6 of the step function was fixed at 5.

Some precautions in fitting were taken to assure an ac-
curate assessment of Re, . First, we found the value of
Re, . to be relatively insensitive to variations of 6 between
3 and 8. For 8's beyond this range the fitting routine
would not converge. Second, only the data within a cer-
tain range of Re were appropriate to use in the fit. For
instance, for Re around 2 to 3 times Re,. there was a
transition to another Aow regime causing a further break
in slope. Other times the attenuation strayed from linear
growth before or after Re, In a majority of cases the
choice of which data to fit was straightforward and clear.
When the choice was less evident, a larger uncertainty
was assigned to Re, . at that temperature.

The critical Reynolds number as a function of temper-
ature is plotted in Fig. 2. The error bars on the graph
represent 90%-confidence intervals calculated by the
fitting routine except for the cases mentioned above. The
open squares are our experimental data points and the
solid triangles are calculations from the stability analysis
of Barenghi and Jones [6]. The agreement is good for
those temperatures where experiment and theory overlap.
It appears that there may be a small systematic deviation
which could be accounted for by imprecise knowledge of
the system dimensions. Since the critical Reynolds num-

ber depends strongly on radius ratio, an error of 0.2% in

radius ratio would correspond to a shift in Re, . of 20.
The most noteworthy feature of Fig. 2 is the downward

turn of the data as T T~. The rightmost triangle is the
calculated critical Reynolds number at Tz where helium
becomes a purely classical Auid. The approach of the ex-
perimental critical value to the classical one shows that
we recover the classical result, and the transition we have
found is indeed the well-known Taylor transition.

Below 2. 1 K the stability analysis finds that the wave
number k =2nd jX goes to zero, making quantitative com-
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FIG. 2. Temperature dependence of the critical Reynolds
number. The squares are experimental data points with errors
from the fitting routine. The solid triangles are calculated
values from the stability analysis of Barenghi and Jones. The
lowest triangle is the critical Reynolds number for He I at 2. 172
K.

parisons to experiment difficult. Qualitatively, however,
the theory expects a sharp drop of Re, with decreasing
temperature. This is observed experimentally. We
found it diScult to determine the critical point as the
temperatures dropped below 2.0 K owing to increased
rounding of the data. Furthermore, the range of Rey-
nolds numbers usable for fitting became smaller, making
the choice of which data to fit increasingly diScult.
There often was an additional break in the slope at a
Reynolds number not much higher than critical. For in-
stance at 1.975 K we found two breaks in the slope both
of which we include in Fig. 2 for completeness. Also the
determination of which break corresponded to the onset
of quantized vorticity and which corresponded to the
Taylor transition became di%cult. A separate study of
the onset provided some helpful clues, but we nevertheless
consider the lower-temperature data more tentative than
that which was taken above 2.0 K.

We have shown the success of the modern equations of
motion and the boundary conditions by verifying the
linear-stability theory of Barenghi and Jones [4]. Equally
important, a new field of study has been opened in He I I
fluid dynamics. It has been made possible by the invalu-
able direction provided by the theory, for we would not
likely have found this subtle transition without theoretical
guidance. Further theoretical work, both linear and non-
linear, and further experimental investigations are called
for. Local probes of the vorticity could provide informa-
tion about the vortex structure. Variations of the aspect
ratio could be helpful in uncovering the low-temperature
behavior, and an examination of flow states at higher
Reynolds numbers where turbulence sets in would also be
of interest. As in classical Taylor-Couette flow, many
variations on the basic experiment reported here suggest
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themselves. Adding axial counterAow with a heater is an

obvious next step.
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