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We study the process of monopole-antimonopole (hedgehog-antihedgehog) annihilation in nematic
liquid crystals theoretically and experimentally. We show, using a "mini-max" argument, that there ex-
ists a stable scaling solution to the nematodynamic equations describing this phenomenon, and find the
solution numerically. We study the process experimentally in the unlaxial nematic, 4-cyano-4'-n-
pentylblphenyl, following a pressure jump or thermal quench. We confirm, over 3 orders of magnitude
in time, the scaling-solution prediction for the pair separation D We fin.d

Dec�(to

—r)', with a=0.5
~ 0.03.
PACS numbers: 61.30.3f, 64.70.Md„98.80.Cq

Liquid crystals provide a laboratory system in which
the dynamics of topological defects produced in sym-
metry-breaking phase transitions can be explored. Such
defects play an increasingly central role in condensed
matter, particle physics, and cosmology. It is likely that
understanding gained in the study of defect dynamics in

liquid crystals will have broad application in other fields.
Recently we have shown [1,2] that string defects in liquid
crystals [3] are formed in accordance with the Kibble
mechanism widely invoked in the cosmological context
[4]. The string density scales as r in agreement with
the predictions of a "one-scale" model analogous to that
used for cosmic strings [5,6].

In this paper we explore the dynamics of the point de-
fects (known as "hedgehogs" or "point singularities" in
the liquid-crystal literature, or "global monopoles" in the
cosmological literature), in particular monopole-anti-
monopole (mm) pair annihilation [7]. We are interested
in the behavior of free poles in bulk medium —in related
experiments, Lavrentovich and Rozhkov [8] and Rapini,
Leger, and Martinet [9] considered the annihilation of
"boojums" (surface defects in the form of half mono-
poles), with results similar to those reported here.

A naive model of mm annihilation is to argue that the
force of attraction between the pair is constant (the ener-

gy scaling as the separation D), but the damping force is
proportional to the "size" of the m, m, given by D. Thus
one obtains dD/dr ~ —I/D with solution D a: (to —t) '~ .
We shall see how this behavior actually emerges from the
field equations. In the simplest "one-constant" approxi-
mation, and in the absence of Auid Bow, the "nemato-
dynamic" equations [10] describing the relaxation of the
liquid-crystal director in the nematic phase are given by

)
" =SC[V'n +(Vn') (Vn')n ], (I)

Bt
where '(nt, )xis the three-component director field, con-
strained to have unit length, and repeated indices are
summed. K is the elastic constant and y a damping con-
stant. Equation (1) is the nonrelativistic analog of the
nonlinear sigma model which determines the evolution of
global defects produced in cosmology [11].

Scaling solutions occur in partial diN'erential equations
when the solution loses dependence on the initial condi-

tions. In our case, as the mr@ separation shrinks to zero,
we expect the solution to lose dependence on the details
of the long-wavelength modes making up the in itial
configuration. In this case, dimensional analysis dictates
that n' can depend only on the dimensionless scaling vari-
able z=()/K) ' x/(to —t) ', where to is the annihilation
time. Then (1) becomes

—, z V n'=V'n +(V n") (V nb)n". (2)
This equation follows from the stationarity of the follow-
ing positive-definite energy functional:

d ze * (V n') (-V n'), - (3)

where one imposes the constraint n'n' = 1 with a La-
grange multiplier.

Now we shall argue that a stationary point of (3) actu-
ally exists. Consider the set of all possible monopole-anti-
monopole configurations where the poles are located on
the z axis at z = 4- R. For each R there exists a
configuration that minimizes D. For R((1 the exponen-
tial in (3) can be ignored: Then the simple scaling argu-
ment of Derrick [12] shows that 6;„ccR. For R)) 1 it is

—R 2/4clear that 6;„falls as e " since n' may be taken to be
uniform out to a radius of order R. Thus 6';„goes to
zero at small or large R. In fact R parametrizes a one-
parameter noncontractible loop in configuration space, as
long as we identify the R =0 "vacuum" with that at
R =~. This is made rigorous by using periodic boundary
conditions. One can now imagine deforming this loop to
the minimal-energy trajectory through configuration
space. A maximum-energy point must occur on this se-
quence of minimal-energy configurations, corresponding
to a stationary point of D. This corresponds to a classical
solution with a single unstable mode. Note also that the
argument is quite general in character: In [2] we apply
essentially the same argument to show the existence of
scaling solutions for string-loop collapse, and for vortex-
antivortex annihilation in the two-dimensional LV model.

Such a "mini-max" argument, which may be viewed as
an application of Morse theory to infinite-dimensional
configuration space, was used by Taubes to rigorously
prove the existence of a static monopole-antimonopole
solution to the Yang-Mills-Higgs equations [13]. Man-
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ton then applied an analogous argument to the standard
electroweak theory [14], which led to the construction of
the "sphaleron, " an unstable classical solution which

plays a central role in electroweak baryon-number viola-
tion, a topic of much recent interest. We have not at-
tempted a rigorous proof of the existence of the solution
in our case, but have instead used (3) as the basis for an
explicit numerical solution.

Before explaining this, let us interpret the unstable
mode. It corresponds to a change of scale:

6n'(z) =n'((1+ e)z) —n'(z) = ez. V n'. (4)
However, z. V n' i.-s directly proportional to Bn'/Bt, so the
perturbation (4) corresponds to a shift in time, and thus a
shift in to, the annihilation time. From the time-trans-
lation invariance of (1) it is clear that if a single scaling
solution exists, there must be an infinite family related by
time shifts. What appears as an instability in the coordi-
nates t, z is merely a shift in the final collapse time to.
This may also be seen in the model equation dD/dt
= —1/D, with scaling solution D =J2(to —t ) 'I . In
terms of z =D/( r—o I) and I, one sees the same "insta-
bility" of the scaling solution, z =J2. Apart from this
mode, we expect the scaling solution to be stable to small
perturbations, and this is confirmed by our numerical
study.

We used (3) as the basis for a numerical "relaxation"
procedure. We assume cylindrical symmetry, with the
following ansatz for the Cartesian components of n:

n(z) =n~cos(p)e„+n~sin(p)e~+n'e. - . (5)
As initial conditions we take n~=cos(0 —0), n'=sin(0
—0), where 0, 0 are the polar angles from origins located
at the m, m, respectively. Upon integrating over p, the
azimuthal angle, and discretizing, 8 becomes a simple
function of the (n=, n~) at each lattice site. Minimization
of 6 with respect to the director at each site results in re-
placing the director at that site with a weighted average
of the director at neighboring sites. One then sweeps
through the lattice minimizing 8 at each site in turn.
The boundary conditions, at radius p=R and z =+ Z
are as follows. We use fixed boundary conditions, with
the director perpendicular to the radial boundary, as in
the experimental setup below. This means that there has
to be an "escaped" + 1 string running down the center of
the cylinder, which is observed. On the z = ~ Z surfaces
we choose the director to take the form of the exact
minimal-energy + 1 string:

=sin[0(p)]cosine„+sin[0(p)]singe„,+cos[0(p)]e, ,

with p the azimuthal angle and 0(p) =2tan '(p/R).
Cylindrical symmetry dictates that the director (n', n~)
=(~ 1,0) on the z axis.

We could proceed by fixing the director around the
poles and then relaxing to 8;„(d)for each d. However,
fixing the director near the monopoles is artificial, and ac-
tually results in "singular" configurations: The flux tends
to collapse onto the z axis, either between the monopoles
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I IG. 1. Result of numerical "relaxation" calculation of the
scaling solution for the annihilation of a monopole-anti-
monopole pair. The configuration of the director field n is

shown at each site on the 60X 80 lattice. Cylindrical symmetry
has been used: The full three-dimensional configuration is ob-
tained by a rigid rotation of this plane about the z axis. The
poles are located at z =30 and z =51, on the z axis. The
boundary conditions are described in the text.
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or off to z = ~ ~. Instead it is better to replace the ex-
2j4ponential e I by e = I and adjust L to keep the

poles stationary. By changing coordinates to z'=z/L, this
is seen to be equivalent to changing the scale of the solu-
tion (and therefore d) by a factor L.

With this procedure the director is allowed to freely
adjust itself everywhere. For small L, as expected we ob-
serve the mm pair move apart, and for large L they move
together, this being preceded by the "flux lines" moving
out towards z =+ ~ before the pair moves apart, or
moving in towards the origin before the pair pulls togeth-
er. By adjusting L to keep the monopoles at fixed separa-
tion, one finds a critical scale L~. The method appears
stable and convergent. The end result after 5000 steps is
shown in Fig. 1, corresponding to a separation d of 21
grid units, and with L~ = 12.5. This corresponds to a
scaling solution with rnm separation

D =(d/L, )«. I) '!'a-V &) 'I'=1.7(I. I) '"a-/»'I'
Apart from the one unstable mode we have already ac-
counted for, the scaling solution appears stable, in line
with expectation from the mini-max argument.

We now turn to the experiment. In nematic liquid
crystals with cylindrical boundary conditions, mm pairs
have been observed before [15]. The director is forced to
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be radial near the capillary walls when they are treated
with a homeotropic alignment material, and the director
is observed to "escape" along the axis [15-18],forming a
diffuse type-1 singularity, even for capillaries down to 0.2
pm in radius [18]. We have studied monopole-anti-
monopole annihilation in this situation. A similar process
was studied in [8] and [9], namely, the annihilation of
boojums (half monopoles attached to a surface) in thin
films of nematic liquid crystal. Their results for the scal-
ing of the separation of the boojum-antiboojum pair are
quite similar to ours for the monopole-antimonopole pair.

Our experiments used the uniaxial nematic 4-cyano-
4'-n-pentylbiphenyl, known as K 15. The isotropic-to-
nematic transition occurs at 35.3 C and atmospheric
pressure. The apparatus consisted of a quartz capillary,
with 0.35+ 0.03-mm internal diameter, filled with the
K15 liquid crystal. The capillary was treated with an
homeotropic alignment material, N, ¹dimethyl-¹ cta-
decyl-3-aminopropyltrimethoxysilylchloride (DMOAP),
imposing the boundary condition mentioned above, and
then placed between two planar glass windows, with the
intermediate region filled with glycerol as an index-
matching medium. The cell was mounted on the stage of
a transmission optical microscope. Visual images were
recorded with an HSV-400 (NAC, Inc. ) video recorder
at a rate of 200 frames/s.

Various defects, strings (+'
& and ~ 1 disclinations)

and monopoles (hedgehogs), were generated during rapid
transitions from the isotropic to the nematic phase. The
transition was induced either through rapid pressure
jumps or temperature quenches. In the former case, the
glycerol bath was heated and the temperature monitored
with a type-K thermocouple. One end of the capillary
was sealed oA and the other end was connected to a reser-
voir, filled with FC-72 (3M, "Fluorinert"), that could be
pressurized to 5000 psi. The pressure was increased in

less than 50 ms to about 1500 psi, at 36'C, and kept con-
stant. For temperature quenches, the isotropic phase was
obtained by heating the capillary to about 40 C. It was
then cooled in a glycerol bath at 20 C. A separate study
showed the temperature dropped from 40 to 22 C in less
than 10 s. After this cooling, the mm separation D was
observed and measured with time.

Figure 2 shows a typical mm annihilation event, span-
ning 100 s. The mm pair, produced in a thermal quench,
consists of two monopoles diametrically opposite on what
appears as a bright "looplike" optical pattern, oriented
along the axis of a capillary of 0.35-mm internal diame-
ter. By rotating the capillary azimuthally one sees that
the loops are cylindrically symmetric, so the director
configuration is actually ellipsoidal in form. The loop
shape is elongated when the mm separation distance is
comparable to or larger than the capillary radius.
Presumably the tension of the type-1 disclination is the
driving force making the loop contract. We have always
observed loops positioned on the capillary axis to collapse
asymmetrically. One pole remains fixed and the other
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FIG. 2. Sequence showing the collapse of a type-I disclina-
tion loop with a monopole-antimonopole pair on it. Each image
is labeled with the time in seconds before the final annihilation.
The interpole distance D is about 0.4 mm in the first image.

moves toward it. This may be due to the preferred direc-
tion established by the director configuration escaping
along the capillary axis. In the case where the loop was
near the capillary wall, both poles approached each other.
We also observed an event most analogous to the numeri-
cal scaling solution discussed above, where the poles were
located on a "linear" type-1 disclination. In this case
both poles moved, but one still moved more than the oth-
er. Understanding this behavior probably requires going
beyond the one-constant approximation.

Figure 3 is a plot of the mm separation for several sets
of data. All data are from the annihilation of monopoles
on loops except the data represented by the crosses, which
are for the collapse of monopoles on a linear type-1 dis-
clination, situated along the capillary s axis. This latter
situation occurred only rarely, but as mentioned is the
case best represented in the numerical simulation per-
formed above.

The lower data sets were produced with thermal
quenches, in a capillary of 0.35-mm inner diameter. The
solid squares are for the collapse sequence shown in Fig.
2. The upper data sets, displaced one decade for clarity,
were produced with pressure jumps. The open circles are
the data for a 0.35-mm capillary, and a pressure jump of
7.6 MPa (1100 psi) at a temperature of 36'C. The other
two sets used a capillary of 1.1-mm inner diameter, and a
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pressure jump of 8.6 MPa at 36.4 C. Fitting our data by
the scaling solution gives y/K = 2.8t/d = 5.3 ms pm
This is comparable to the value measured directly by Wu
and Cox [19], who obtained yi/K~ i ——10.5 mspm, by
measuring the electro-optic response time.

For all data sets, the mm separation scales at late times
approximately as D a: (to —t) . In the smaller capillary,
for mm separations greater than the capillary's inner ra-
dius, the scaling is instead given by D ceto —t The naiv. e
argument given above indicates that the damping force
on the poles should be independent of D in this case, since
the capillary provides a cutoff to the monopole size, but
the force should still be constant. This results in D scal-
ing linearly with time, as observed. Similar scaling for
the boojum-antiboojum pair separation was observed in
[8] and [9] in thin nematic films between two surfaces—one with the pair on it, and the other homeotropically
aligned. They found that Dec(to —t) for thick films
and D~to —t for thin films. Figure 3 indicates that the
results are only weakly dependent on the geometry or the
means of generating the defect tangle. It also indicates

FIG. 3. The intermonopole distance D vs time before the mm
annihilation time to for several sets of data. The phase transi-
tions were induced by either a thermal quench (lower set of
data points) or by pressure jumps (upper set of data points, dis-
placed upwards one decade for clarity). The solid and dashed
lines represent the scaling D cc (to —t )' with a =0.5 and 1.0, re-
spectively.

that the ratio of the elastic constant to the damping con-
stant is approximately the same for the different tempera-
ture and pressure values chosen in the experiment.

N. T. acknowledges the support of NSF Contract No.
PHY80-19754 and the support of the Alfred P. Sloan
Foundation.

[I] I. Chuang, R. Durrer, N. Turok, and B. Yurke, Science
251, 1336 (1991); I. Chuang, N. Turok, and B. Yurke,
Phys. Rev. Lett. 66, 2472 (1991).

[2] I. Chuang, A. Pargellis, N. Turok, and B. Yurke, Prince-
ton University Report No. PUP-TH-1249, 1991 (to be
published).

[3] See, for example, M. Kleman, Points, Lines and Wallsin
Liquid Crystals, Magnetic Systems and Various Disor-
dered Media (Wiley, Chichester, 1983).

[4] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[5] T. W. B. Kibble, Nucl. Phys. B252, 227 (1985).
[6] A. Albrecht and N. Turok, Phys. Rev. D 40, 973 (1989).
[7] A simple "monopole" configuration is one where the

"director field" n points radially outward from a singular
point. A complication in the case of a nematic liquid
crystal is that n is equivalent to —n, the molecules being
invariant under inversion. Naively, this would make a
monopole and antimonopole equivalent. However, the
relatii e topological charge of two poles is well defined, as
discussed in G. E. Volovik and V. P. Mineev, Zh. Eksp.
Teor. Fiz. 72, 2256 (1977) [Sov. Phys. JETP 45, 1186
(1977)], and P. Goddard and D. Olive, Rep. Prog. Phys.
41, 1357 (1978), for example.

[8] O. D. Lavrentovich and S. S. Rozhkov, Pis'ma Zh. Eksp.
Teor. Fiz. 47, 210 (1988) [JETP Lett. 47, 254 (1988)].

[9] A. Rapini, L. Leger, and A. Martinet, 3. Phys. (Paris),
Colloq. 36, C I -189 (1989).

[10] P. G. de Gennes, The Physics of Liquid Crystals (Claren-
don, Oxford, 1974).

[11] N. Turok, Phys. Rev. Lett. 63, 2625 (1989); N. Turok
and D. Spergel, Phys. Rev. Lett. 66, 3093 (1991).

[12] G. H. Derrick, J. Math. Phys. 5, 1252 (1964).
[13] C. H. Taubes, Commun. Math. Phys. $6, 257 (1982); 86,

299 (1982).
[14] N. S. Manton, Phys. Rev. D 28, 2019 (1983).
[15] C. Williams, P. Pieranski, and P. E. Cladis, Phys. Rev.

Lett. 29, 90 (1972).
[16] P. E. Cladis and M. Kleman, J. Phys. (Paris) 33, 591

(1972).
[17] C. E. Williams, P. E. Cladis, and M. Kleman, Mol. Cryst.

Liq. Cryst. 21, 355 (1973).
[18] G. P. Crawford et ai. , Phys. Rev. A 43, 835 (1991).
[19]S.-T. Wu and R. 3. Cox, J. Appl. Phys. 64, 821 (1988).




