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An analysis of the forward-backward asymmetry in Z decays using data from the Collider Detector
at Fermilab at vs =1.8 TeV yields AFtt =[5.2+ 5.9(stat) ~0.4(syst)1% and sin Ow =0.288 —+IIIII](stat)
~ 0.002(syst).

PACS numbers: 13.38.+c, 12.15.Mm

The weak component of the neutral current violates pari-
ty, and leads to a charge asymmetry in the decay angular
distribution of the Z . This asymmetry depends on the
relative magnitudes of the weak and electromagnetic
components of the neutral current, and hence on sin 0~.
In this paper we present a measurement of the forward-
backward asymmetry in pp Z X e+e A events,
which probes the neutral-current coupling to light quarks
at the Z mass scale, and leads to a measurement of
sin 0~.2

In hadronic collisions, direct e+e pairs are produced
(at lowest order) by the annihilation of a quark-antiquark
(qq) pair via either a photon or a Z . The angular distri-
bution for pp Z X e+e X is expected to be asym-
metric in cos0, where 0 is defined to be the angle between
the outgoing e+ and incoming q in the rest frame of the
e+e pair. The forward-backward asymmetry is defined

by
O'F O'8

oF+og
(2)

where aF= fn[do'/d(cos0)]d(cosO) and att =f—~[do/
d(cos0)ld(cosO). The lowest-order cross section has the
form [2] da/d (cos0) =8 ( I + cos 0) +8 cosO and has
contributions from photon exchange, Z exchange, and
photon-Z interference. The dominant contribution to
AF~ near the z resonance comes from z exchange.

We present a measurement of AF~ and sin 0~ using2

data corresponding to an integrated luminosity of 4. 1

pb
' from pp collisions at Js =1.8 TeV collected with

the Collider Detector at Fermilab (CDF). The CDF
detector is described in detail elsewhere [3]. Briefly, scin-
tillator hodoscopes (BBC) located on either side of the
detector identify inelastic events. Time-projection cham-
bers (VTPC) measure the position of the event vertex. A
drift chamber surrounds the VTPC and measures the
momentum of charged particles in a 1.4-T solenoidal
magnetic field. Electromagnetic and hadronic calorime-

In the standard model [I], the neutral current can be
defined by a mixtu. re of the weak isospin and electromag-
netic currents with mixing angle 0~.

JNc J 3 sin20 JEM

ters extend from —4.2 & g &4.2 in a projective tower
geometry, where g—= —In[tan(0/2)] [4]. A proportional
chamber near shower maximum in the central (~ tI~ & 1.1)
electromagnetic calorimeter measures shower shape and
position.

Each Z event must satisfy a trigger which requires a
central electromagnetic cluster with (i) transverse energy
ET & 12 GeV (ET=Esin8), (ii) an associated track with
transverse momentum & 6 GeV, and (iii) the ratio of ha-
dronic to electromagnetic ET in the cluster (Had/EM)
& 12.5%.

We require each Z event to have one electron in the
central region, where there is good momentum deter-
mination, so that the charge of at least one electron and
the sign of cos0 can be determined, and a second electron
with ~ti~ & 3.5. Both electron clusters must be located
away from calorimeter edges so that their energies are
well measured. The event vertex is required to be within
60 cm in the z direction of the nominal interaction point.

One central electron is required to have (i) ET & 15
GeV and lateral energy sharing in the calorimeter towers
consistent with an electron shower; (ii) the ratio of clus-
ter energy to track momentum E/P & 1.5; (iii) a shower
in the strip chambers with a profile consistent with an
electron shower and centroid position within 1.5 cm in the
P direction and 3.0 cm in the z direction of the extrapo-
lated track; and (iv) isolation I & 0.1, where I =(Er
—ET)/Ec, Er being the total transverse energy in a cone
in tI-p space of radius 0.4 centered on the cluster.

The second electron is required to have (i) ET & 15
GeV; (ii) I & 0.1; (iii) if in the central region, E/P & 1.5;
(iv) if in the plug region, Had/EM & 0.05, transverse en-
ergy profile consistent with test beam electrons, and a
track in the VTPC; (v) if in the forward region, Had/EM
&0.05 and longitudinal energy profile consistent with

test beam electrons.
We take as our Z sample the 252 events with

75 & M, , & 105 GeV. The background from QCD pro-
cesses is estimated from studies of invariant mass and iso-
lation to be 7 ~ 3 events. If this background is symmetric
in cos0, the observed asymmetry is reduced by 3% of it-
self. The background from ~ pairs is estimated from
Monte Carlo to be less than 0.5 event. The background
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FIG. l. Angular distribution of electrons (a) before and (b)
after acceptance corrections. The solid line is the result of the
likelihood fit.

from W+ jet ev+ jet in which the jet fakes a second
electron is estimated to be less than 0.4 event.

Because of QCD processes, Z 's are produced with

momentum transverse to the beam direction, pT. In this
case, the p and p are not collinear in the e+e rest
frame, and the quark directions are not the p or p direc-
tions. We adopt the method of Collins and Soper [5] in

which cosO is measured with respect to the average of the

p and —p directions in the e e rest frame. This intro-
duces a small, pT-dependent smearing of the measured
angular distribution. In this method, we assume all

quarks are valence quarks, i.e., the q comes from the p
and the q from the p. The small contribution in which

the q comes from the p (approximately 10% of the cross
section) gives an asymmetry opposite to that from the
valence quarks. This contribution is included in our cal-
culation of sin Og below.

The angular distribution dn/dcos8 is plotted before
acceptance corrections in Fig. 1(a). It has the predicted
parabolic shape except at large Icos8I where the electron
ET cut reduces the acceptance. Figure 1(b) shows a plot
of (1/a)der/dcos8 corrected bin by bin for acceptance,
using the ISA)ET [6] Monte Carlo and a simple detector
simulation.

We use a logarithmic likelihood fit with the functional
form P(cos8) =

& (I+cos8)+AFBcos8 to determine AFrr,

AFg and its variance can be estimated from the event
sample without explicit reference to the angular depen-
dence of the acceptance, provided the acceptance is sym-
metric with respect to cos8. The fit yields A~rr =(5.0
+ 5.9)%, and is shown in Fig. 1(b). The photon-Z in-
terference term contributes an asymmetry of approxi-
mately 1.5% in our mass region. Using AI;8 and the
lowest-order cross section with MRSB [7] parton distri-
bution functions we derive the lowest-order value
sin 8rr I~, =0.231 —+ooIs(stat) [g].

Systematic uncertainties on AFq and sin 0~ come from
several sources and are summarized in Table I. Bias in

the fitting procedure is determined to be less than 0.26%
by fitting many Monte Carlo data samples. Systematic
uncertainties due to trigger, track reconstruction, and
electron selection are determined by Monte Carlo calcu-
lation, assuming the maximum bias in the acceptance
consistent with the measured ineSciencies. Varying the
calorimeter energy scales by 5% in the Monte Carlo cal-
culation changes AI-p by & 0.03%.

has contributions from background and higher-
order QCD, QED, and weak processes. We subtract
from AFB the contributions from background and QCD
processes, and then derive sin 0~ from the corrected AFg.

Order-a, QCD processes aA'ect the measurement in

two ways: The Z acquires a longitudinal polarization
which modifies the symmetric part of the angular distri-
bution, and the measurement of 8 is smeared in events
with large pT. We estimate the size of the QCD correc-
tions by convoluting our measured pTz spectrum [9] with a
calculation of the angular distribution as a function of pT
[10]. After background and QCD corrections, we find

AFrr = [5.2+' 5.9(stat) ~ 0.4(syst)]%. The uncertainty on

TABLE I. Corrections and systematic uncertainties for AFg and sin 0~.

QCD background
in% fitter
Electron trigger
Track reconstruction
Electron selection
Energy scale
QCD corrections
QED corrections
Weak corrections
Parton distribution

hAFB
(%)

+0.14
0
0
0
0
0

+0.09

aAFB
(%)

0.06
0.26
0.23
0.19
0.10
0.03
0.09

—0.0004
0.0
0.0
0.0
0.0
0.0

—0.0003
—0.0014
—0.0013

0.0002
0.0008
0.0006
0.0005
0.0003
0.0001
0.0003
0.0014
0.0002
0.0004
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the measured AFtt is dominated by statistics.
We make higher-order electroweak corrections in order

to estimate sin Ott. We integrate the order-a QED
cross section using a Monte Carlo and a simple detector
simulation which accounts for hard photon bremsstrah-
lung [11]. Calculations of the virtual and soft photon
corrections for e+e qq [12] are time reversed to ob-
tain results for qq e+e, and are included in the
Monte Carlo calculation. After QED corrections we find
sin 0~=0.229. The uncertainty in the QED corrections
to sin On is 0.0014, estimated by varying the infrared
cutoA'. Including the order-a weak corrections, we find
sin 0~=0.228. The theoretical uncertainty on the weak
calculations is 0.0002.

There is an uncertainty in the relative contributions of
u valence quarks, d valence quarks, and sea quarks in the
proton, giving an uncertainty on sin 0~ of 0.0004, deter-
mined by integrating the cross section with several
different parametrizations [7,13]. We use the MRSB pa-
rametrization for the final result.

Our final result,

sin On =0.228+ooI5(stat) + 0.002(syst),

is in good agreement with the value sin 0~=0.24 —+004
measured by the UA1 Collaboration [14] from the asym-
metry in leptonic decays of the Z, with the values
sin 0~=0.2291+ 0.0040 measured by the ALEPH Col-
laboration [15], sin On =0.2309~0.0048 measured by
the DELPHI Collaboration [16], and sin 0n =0.230
+ 0.004 measured by the L3 Collaboration [17] from the
Z mass and leptonic width, and with the value sin 0~
=0.233—+ooo6 measured by the OPAL Collaboration [18]
from a simultaneous fit to the leptonic cross sections and
forward-backward asymmetries.

The parameter sin 0~ is measured from the asym-
metry, and sin O~Im.„»=1—M~/Mz [19] from the ratio
of the W and Z masses. We use the standard model to
convert our measurement of sin 0~ from the asymmetry
into a measurement of sin Ott I

.„„[20,21]. A plot of
sin 0~I .„„derived from the asymmetry as a function of
the top mass is shown by the solid line in Fig. 2, assuming
a Higgs mass of 250 GeV (the Higgs mass dependence is
small); the dashed lines indicate the 1 a experimental un-
certainty. Figure 2 also shows the jIo. confidence region
derived from recent Z mass measurements [22,23] as
well as a direct measurement of 1

—Mtt /Mz =0.232
+'0.008 [24] determined from the CDF W and LEP Z
masses. AF& is not strongly dependent on the top mass;
the top mass dependence in Fig. 2 comes from higher-
order corrections in the standard model incurred in the
conversion from sin Ou to sin 8~I

In summary, we have measured AFtt = [5.2~ 5.9(stat)
~0.4(syst)]% after background and QCD corrections,
and sin 0~ =0.228-+o'oIq(stat) +'0.002(syst) after back-
ground and radiative corrections. The systematic uncer-
tainties are summarized in Table I. Our measurement of
sin 0~ is consistent, both without and with order-a radi-

0.20

, , I. . . , I. . . , I. . . , I, ,0.
50 100 150 200 P.50

ative corrections, with previous measurements of sin 0~
at the Z mass. Our measurement of sin Ott I

.„,, from
the asymmetry is consistent with measurements of
sin Ott I „. „ from the W and Z mass ratio over a broad
range of top-quark masses.
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