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Chiral Properties of Dynamical Wilson Quarks at Finite Temperature
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Chiral properties of Wilson fermions in full QCD with two degenerate fiavors at finite temperature are
investigated by numerical methods. We show that when the quark mass is properly defined, for a given g
(gauge coupling constant) and K (hopping parameter), its value is almost independent of whether the
system is in the high-temperature phase or in the low-temperature phase. The temperature dependence
of hadronic screening masses is consistent with the physical picture that both U(1) and SU(2) chiral
symmetries are recovered in the high-temperature phase.

PACS numbers: 12.38.Gc, 11.30.Rd

In the Wilson formulation [1] of quarks on a lattice,
chiral symmetry is explicitly broken by the so-called Wil-
son term which is introduced in order to avoid species
doubling. Therefore it is not a priori obvious whether one
is able to define a chiral limit for Wilson quarks, in par-
ticular, on a lattice with finite lattice spacing. Only after
the existence of a chiral limit is established, irrespective
of the phase of a quark-gluon system, does it become pos-
sible to ask how chiral symmetry of the quark-gluon sys-
tem is realized.

In a previous paper [2] we have shown the following
for Wilson quarks in the quenched QCD: (1) When the
quark mass is defined properly by a PCAC (partial con-
servation of axial-vector current) relation, for a given P
(P=6/g ) and K, its value is independent of whether the
system is in the high-temperature phase or in the low-

temperature phase. Therefore one is able to define the
chiral limit irrespective of the phase of a gluon system.
(2) The temperature dependence of the pion screening
mass in the chiral limit is consistent with the physical pic-
ture that the spontaneously broken chiral symmetry is
recovered at a temperature identical with the deconfining
transition.

Although it is expected that the pure gauge theory
resembles full QCD in respect to the confinement and the
chiral property, what is really important is to investigate
these properties in full QCD. In the physical world of
QCD, only the masses of the u and d quarks are much
smaller than those of other quarks, the deconfining tem-
perature, and the QCD scale parameter. Therefore full

QCD with two degenerate light quarks is a good approxi-
mation to the physical world. It is thus highly important
to investigate chiral properties of Wilson quarks, because
the Wilson formulation of quarks is the only known way
to describe two flavors of light quarks in terms of a local
action. Hence in this paper we would like to investigate
the chiral properties of Wilson quarks in full QCD with
two flavors. Our primary interests here are whether the
value of the quark mass mq, defined as in the previous pa-
per, is independent of the phase, and whether chiral
SU (2) and/or U (1) symmetries are recovered in the

high-temperature phase. Of course, the second question
is meaningful only when the answer for the first one is
aSrmative because only in this case can the chiral limit
be defined irrespective of the phase, as stressed above.

We consider QCD with two degenerate quarks. We
take the standard one-plaquette action and the r =1 Wil-
son fermion action. We make simulations at P=5.5 on
an 8 x 8 x 20 x N, lattice (N, =4 or 8) with K =0.15, 0.16,
0.1615, 0.163 for NI =4 and with K=0.15, 0.155 for
N, =8. We call the direction whose linear extension is 20
the z direction. We use an antiperiodic boundary condi-
tion for quarks in the t direction and periodic boundary
conditions for quarks in the spatial directions as well as
for gluons in all directions. Investigation [3-5] of the P
dependence of the Polyakov loops shows that the systems
for all the hopping parameters at P=5.5 are in the high-
(low-) temperature phase on the lattice with N, =4
(N, =8). Gauge configurations are generated by the
hybrid Monte Carlo algorithm (HMCA) [6] with mo-
lecular-dynamics step size Ar =0.025 and the numbers of
steps for one trajectory nMD =40 (except for the case at
K=0.155 on the N, =8 lattice; h, z =0.02 and nMD=50
for this case). The inversion of the quark matrix
(x =D 'b) is made by a minimal residual method with
incomplete LU (lower triangle matrix-upper triangle ma-
trix) decomposition [7,8]. The stopping condition is

r =
) (lb

—Dx
~ ~/v 3 x 4V =4 5 x 10 . The acceptance ra-

tio is (70-80)% for all cases. After thermalization of
1000 trajectories or 500 trajectories, depending on the in-
itial configuration, typically 20 gauge configurations are
saved, separated by 50 trajectories (except for the case at
K=0.150 on the N, =4 lattice; 100 trajectories for this
case). We check the equilibrium of the system by moni-
toring (e ).

Hadronic propagators in the z direction are calculated
on the 8 x 8 & 40 x N, lattice obtained by doubling the
original 8x8x20xN, lattice. We calculate the prop-
agators of Aavor nonsinglet mesons, tr

(gyes

r 'y), p
(yy;r'y), 8 (yr y), 8 (PtT, r itr), 2, (itty, y; r "y), and

p (iiryoy;r'y) (i =1,2), as well as those of baryons, N
(nucleon), 6 (delta), and their chiral partners.
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We define the quark mass in the continuum theory, in

the same way as in the previous work [8], by

&olr)„A„(x) ltr& =2m &0IPs(x) ltt&

Here, A„(x) =y(x)ysy„y(x) and Ps(x) =y(x)ysy(x)
with the Aavor index suppressed, and the pion is in the
zero-momentum state. Thus our definition of the quark
mass on the lattice is given by
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Alternatively we may replace the derivative |)„in Eq. (1)
with the discrete derivative on the lattice. Noting the re-
lations
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&olA4(t + 1) la& =e "'
&olA4(t) lrr),

we have

(3)
FIG. I. Typical results for R(z) which tends to 2mv/m„ for

large z, together with the fitted lines. The data are on the
Nt =4 lattice.

&ola„A„( )l &=.,&olv.A, (t)l & (4)

in the continuum theory. Here cz is a correction factor.
For example, when we put V4A4(t) =[A4(t+1) A4(t—
—I )]/2, cq =2m /(e —e ), and when V4A4(t)
=A4(t+ I ) A4(t), cq=—m /(1 —e ). Hence we have
an alternative form of the definition of the quark mass on
the lattice given by

c.&OIV.A4(n) l~) =2m &olPs(n) lz&. (5)

&g. ., .A. (x,y, z, t)tr(0))
R z

&g„, , z(x,y, z, t)tr(0)&
(7)

At zero temperature, this definition is reduced to Eq. (2).
Similarly we may calculate the quark mass by a formula
which corresponds to the definition given by Eq. (5). We
have checked that each of them gives identical results for
the quark mass within statistical errors.

The quark mass defined by relation (2) was first nu-
merically calculated in Ref. [8] [see Eq. (5.3) and Fig. 11
therein] in quenched QCD. Independently and slightly
later, Maiani and Martinelli [9] [see Eq. (26) and Fig. 1

therein] calculated, also in quenched QCD, the quark
mass similarly defined, being based on careful analyses
[10] of chiral Ward identities of Wilson fermions on a
lattice. Both works confirmed the relation m —mq at
zero temperature.

The screening masses [11]of the hadrons at each K are
determined by fitting the propagators typically for
z =9-20 with one-mass forms. The errors for the masses
are estimated by the jackknife method. All the screening

Note that Eq. (3) holds on the lattice as well as in the
continuum theory and therefore this definition is com-
pletely equivalent to the definion of Eq. (2).

Thus we calculate the quark mass in finite-temperature
QCD by

2m~ =m, lim R(z),:targe

with
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FIG. 2. 2m' and m vs I/K. The straight lines are the fit to
the data for 2m„on the N, =4 lattice and the fit to the data for
m on the Nt =8 lattice.

masses in the high-temperature phase can be determined
with small errors, in contrast to the case of the low-

temperature phase where the propagators of the particles
other than the s-wave particles (tr, p, N, and 6) are not
good enough to determine their screening masses with
small errors.

In Fig. 1 we present typical results for R(z) on the
N, =4 lattice. The R(z) is Aat for large z. We deter-
mine the quark mass by fitting the data in the Hat region
(typically for z =10-18) with 2mq/m by the jackknife
method. The region of z for the fit is chosen in such a
way that Am is zero within Icr, when the R(z) is fitted

by the form 2m~/m exp( —Am z).
%e present in Fig. 2 the results for the quark masses

and the pion screening masses squared. The m~ on the
two lattices as well as m on the N, =8 lattice are fitted
by linear functions of 1/K. As the figure shows, the mq's

obtained for the N, =8 lattice are almost (but not exact-
ly) on the line fitted to those for the N, =4 lattice. The
K,""'""'s where m~ vanishes are 0.1627(1) and 0.1621(8)
on the N, =4 and N, =8 lattices, respectively. The two
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EC,""'""'s are almost identical. Thus we conclude that the
quark masses are almost independent of the phase. The
coincidence of the quark mass on the two lattices is not
exact. The diAerences slightly exceed the errors estimat-
ed. One possible explanation for this is that the errors for
the quark masses are underestimated: It is not certain
that the separation of configurations (50 or 100 trajec-
tories) is large enough to regard configurations as statisti-
cally independent. (We find that the autocorrelation for
the 1 && 1 Wilson loop is about 100 trajectories. ) An alter-
native explanation is that the slight difI'erences are eAects
due to the O(a) chiral-symmetry breaking of Wilson
quarks. Note that the K, where m„vanishes in the low-

temperature phase is 0.1610(12) (this K, is also con-
sistent with those given by Ukawa [3] and Gupta et al.
[4]) and approximately agrees with the Kq"'""'s. It
should be emphasized that we can define the chiral limit
uniquely within small differences irrespective of the phase
for the case of Wilson quarks with two degenerate flavors.

Note that we are able to calculate the hadron propaga-
tors around K, (K =0.1615 and 0.163) in the high-
temperature phase as in quenched QCD: The number of
iterations needed for the matrix inversion increases only
moderately. For example, the number of iterations at
K=0.163 with N, =4 is approximately equal to that at
E =0.155 with N, =8. This is consistent with our obser-
vation that D has no zero modes around K=K, : The
smallest eigenvalues of the yqD around K=0.163 ob-
tained by the Lanczos method are not small (of order
0.1) for all 20 configurations. However, this is in conllict
with what is stated in Ref. [5].

As Fig. 2 shows, m on the N, =8 lattice is proportion-
al to the quark mass. This is exactly what we expect
when we regard the pion as a Goldstone boson associated
with spontaneously broken chiral SU(2) symmetry. On
the other hand, m in the high-temperature phase does
not vanish at the critical hopping parameter. Thus the
behavior of the pion screening mass is consistent with the
picture that the spontaneously broken chiral symmetry is

recovered in the high-temperature phase.
Now let us discuss how chiral multiplets are realized in

the high-temperature phase of QCD. At zero tempera-
ture, the chiral SU(2) symmetry is spontaneously broken,
while the chiral U(1) symmetry is explicitly broken by
the U(1) anoinaly. At high temperatures, besides the
SU(2) symmetry, U(1) symmetry is expected to be re-
stored, associated with the diminution of the U(1) anom-
aly. Although we have calculated the screening masses
only for flavor nonsinglet hadrons, we can distinguish the
restoration of the U(1) symmetry from that of the SU(2)
symmetry: For the restoration of the U(1) symmetry the
6-z and p-B multiplets are realized, while for the restora-
tion of the SU(2) symmetry, the p-Ai multiplet is real-
ized. In contrast to the meson multiplets, the restoration
of either symmetry implies multiplets of baryons and
their chiral partners. Note that we can see what kinds of
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FIG. 3. Typical meson screening masses together with 2m~
on the NI =4 lattice.

multiplets are realized around K, without extrapolation
in the high-temperature phase. Figure 3 shows the re-
sults for the meson screening masses on the N, =4 lat-
tices. We see from the figure that both the z-6 and p-2 1

multiplets are almost degenerate at K =K, . We also find
that the p-B multiplet as well as the baryon multiplets
are almost degenerate. Therefore we conclude that both
U(l) and SU(2) chiral symmetries are almost recovered
in the high-temperature phase (at p=5.5 on the N, =4
lattice with K—0.163). Our results suggest that the
O(a) chiral-symmetry breaking is already small at
P =5.5. Similar calculations for Wilson quarks have been
also done by other groups [3,12). See also the calcula-
tions [13]of the screening masses with staggered quarks.

Note that the screening masses of the mesons and the
baryons are, respectively, roughly equal to 2+T and 3+T
(T= —, ) which are the lowest Matsubara frequencies in

the corresponding channels. This means that quarks are
almost free [14). a ' at p=5.5 is roughly 1.6-1.8 GeV
[15], which implies that the temperature on the N, =4
lattice is about 2 or 3 times the deconfining temperature
T, . Further calculations at temperatures closer to T, are
necessary to see whether hadronic modes [11] really exist
in the high-temperature phase of full QCD with Wilson
quarks.

In a previous paper [2) we have shown in quenched
QCD with Wilson quarks that the deconfining transition
temperature is, within the precision of the calculation,
identical to the restoration temperature of the flavor-
nonsinglet chiral symmetry. We would like to investigate
in the near future whether the same relation is satisfied
for the SU(2) symmetry in full QCD and whether the
U(1) symmetry is restored exactly at the deconfining
temperature or is restored asymptotically.

The numerical calculations reported here have been
performed with HITAC S820/80 at KEK. We would
like to thank members of KEK for their warm hospitality
and strong support. We also would like to thank S.
Gottlieb, M. Okawa, D. Toussaint, and A. Ukawa for
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