Nonlinear Nature of Gravitation and Gravitational-Wave Experiments

Demetrios Christodoulou
Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

(Received 17 December 1990; revised manuscript received 20 June 1991)

Abstract

It is shown that gravitational waves from astronomical sources have a nonlinear effect on laser interferometer detectors on Earth, an effect which has hitherto been neglected, but which is of the same order of magnitude as the linear effects. The signature of the nonlinear effect is a permanent displacement of test masses after the passage of a wave train.

PACS numbers: 04.30.+x, 04.80.+z

The need of taking full account of the nonlinearity of Einstein's equations when one wants to study the generation of gravitational waves from strong sources is generally recognized. However, since the sources are at enormous distances from the Earth, the amplitude of the waves when they reach the detector is so small that it has always been assumed that when treating the waves in the Earth's neighborhood the linearized theory suffices. It is the purpose of this Letter to show that this assumption is in error.

The nonlinearity of Einstein's equations manifests itself in a permanent displacement of the test masses of a laser interferometer detector after the passage of a wave train. Such a permanent displacement, called the "memory" of the gravitational-wave burst [1,2], has long been known to occur [3] within the framework of the linearized theory as a result of an overall change of the second time derivative of the source's quadrupole moment or equivalently of an overall change of the linear momenta of the constituent bodies. As this was the only known cause of a memory effect, it was thought that typical sources, i.e., the coalescense of a neutron star binary, in which little linear momentum is radiated away, will produce bursts with negligible memory. However, we show in this Letter that every burst has a nonlinear memory, due to the cumulative contribution of the effective stress of the gravitational waves themselves. Moreover, for a binary coalescense, the nonlinear memory is of the same order of magnitude as the maximal amplitude of the dynamical part of the burst.

Our treatment is based on the rigorous analysis of the asymptotic behavior of the gravitational field given in [4]. In that work we considered asymptotically flat initial data for the vacuum Einstein equations which correspond to a Cauchy hypersurface of vanishing linear momentum. We showed that if the initial data satisfy a smallness condition then they give rise to a geodesically complete spacetime. We analyzed in detail the asymptotic behavior of the solutions at null and timelike infinity. The results which have to do with the behavior at null infinity, which is what concerns us here, are largely independent of the smallness condition which was introduced to ensure completeness. Among these results is the formula for the difference of the limits Σ^{+}and Σ^{-}of the asymptotic shear Σ of outgoing null hypersurfaces C_{u}^{+}as u tends to
$+\infty$ and $-\infty$, respectively, which plays a crucial role in the present Letter. The rigorous derivation of this formula given in [4] relies heavily on the results developed in that work. For this reason we shall give below a simple derivation of the formula which is as much as possible self-contained.
Let S_{0} be a spherical spacelike surface surrounding the source in a neighborhood of the intersection of the source with the boundary of the past of an event p of observation at the Earth, and lying in an asymptotically flat Cauchy hypersurface Σ_{0} of vanishing linear momentum. Let $C_{0}{ }^{+}$ be the outer boundary of the future of S_{0}. Denoting by B_{0} the interior of S_{0} in Σ_{0}, let, for each $d>0, B_{d}$ be the set of points in Σ_{0} whose distance from B_{0} is less than d. We define $B^{*}=B_{d^{*}}$ to be the smallest region B_{d} containing the past of p in Σ_{0}. We then define C^{*-} to be the boundary of the domain of dependence of B^{*}. Then p lies in a neighborhood of the spherical spacelike surface S_{0}^{*} of intersection of C_{0}^{+}with C^{*-}. We suppose that S_{0} is chosen so that the generators of C_{0}^{+}have no future end points.

Consider an arbitrary closed spacelike surface S in spacetime. We denote by γ the induced metric on S and by $d \mu_{\gamma}, \nabla$, and K, the area element, covariant derivative, and Gauss curvature of γ, respectively. We define the radius r of S by $r=\sqrt{A / 4 \pi}$, where A is the area of S. Let l and l be, respectively, outgoing and incoming futuredirected null normal vector fields to S subject to the normalization condition $g(l, \underline{l})=-2$. Then l and \underline{l} are unique up to the transformation $l \rightarrow a l, \underline{l} \rightarrow a^{-1} \underline{l}$, where a is a positive function on S. The null second fundamental form χ and the conjugate null second fundamental form χ of S are two-covariant symmetric tensor fields on S defined by $\chi(X, Y)=g\left(\nabla_{X} l, Y\right), \underline{\chi}(X, Y)=g\left(\nabla_{X} l, Y\right)$ for any pair of vectors X, Y tangent to S at a point. We denote by $\hat{\chi}$ and $\underline{\hat{\chi}}$ the trace-free parts of χ and $\underline{\chi}$, respectively. The torsion ζ of S is the one form on S defined by $\zeta(X)=\frac{1}{2} g\left(\nabla_{X} l, \underline{l}\right)$ for any vector X tangent to S at a point. The mass aspect function μ and the conjugate mass aspect function $\underline{\mu}$ of S are functions on S defined by $\mu=K+\frac{1}{4} \operatorname{tr} \chi \operatorname{tr} \underline{\chi}-\mathrm{d} / \overline{\mathrm{V}} \bar{\zeta}, \quad \underline{\mu}=K+\frac{1}{4} \operatorname{tr} \chi \operatorname{tr} \underline{\chi}+\mathrm{d} / v \zeta$. Also the spacetime curvature at S decomposes into the twocovariant symmetric tensor fields $\alpha, \underline{\alpha}$, the one-forms $\beta, \underline{\beta}$, and the functions ρ, σ on S, given by $\alpha(X, Y)=R(\bar{X}$, $l, Y, l), \underline{\alpha}(X, Y)=R(X, \underline{l}, Y, \underline{l}), \beta(X)=\frac{1}{2} R(X, l, \underline{l}, l), \underline{\beta}(X)$
$=\frac{1}{2} R(X, \underline{l}, \underline{l}, l), \rho=\frac{1}{4} R(\underline{l}, l, \underline{l}, l), \sigma \epsilon(X, Y)=\frac{1}{2} R(X, Y, \underline{l}$, $l)$, where X, Y are arbitrary vectors tangent to S at a point and ϵ is the area two-form of S. If $\operatorname{tr} \chi \operatorname{tr} \chi<0$ we can fix l and \underline{l} by requiring that $\operatorname{tr} \chi+\operatorname{tr} \chi=0$. \bar{W} ith this choice, the unit timelike normal to S given by $T=\frac{1}{2}(l+\underline{l})$ is the binormal of S. The Hawking mass m of S is given by

$$
m=(r / 2)\left(1+(1 / 16 \pi) \int_{S} \operatorname{tr} \chi \operatorname{tr} \underline{\chi} d \mu_{\gamma}\right)
$$

and is independent of the ambiguity in the choice of l and \underline{l}. If S has the topology of S^{2}, then by the Gauss-Bonnet formula we have $\int_{S} \mu d \mu_{\gamma}=\int_{S} \underline{\mu} d \mu_{\gamma}=8 \pi m / r$.

We now return to the spherical surface $S_{0}^{*}=C_{0}^{+}$ $\cap C^{*-}$. We choose l and \underline{l} on S_{0}^{*} so that $\frac{1}{2}(l+\underline{l})=T$ is the binormal of S_{0}^{*}. We then extend \underline{l} to C^{*-} to be the null geodesic vector field whose integral curves are the generators of C^{*-} and we consider on C^{*-} the level surfaces of the affine distance from S_{0}^{*}. We then define the retarded time function u on C^{*-} by the requirement that on each level surface, $u=2\left(r_{0}^{*}-r^{*}\right)$, where r^{*} is the radius of the level surface and r_{0}^{*} is the radius of S_{0}^{*}. We use the value of u to label a level surface S_{u}^{*}. The vector field l then extends to C^{*-} by the condition that on each S_{u}^{*}, l is the unique outgoing future-directed null normal to S_{u}^{*} conjugate to \underline{l}. Let ϕ_{0} be a diffeomorphism of S^{2} onto S_{0}^{*} and let, for each u, ϕ_{u} be the diffeomorphism of S^{2} onto S_{u}^{*} such that $\phi_{u}{ }^{\circ} \phi_{0}{ }^{-1}$ is the diffeomorphism of S_{0}^{*} onto S_{u}^{*} given by the flow of \underline{l} on C^{*-}. If w is a p covariant tensor field in spacetime we then have $2(\partial /$ $\partial u)\left(\phi_{u}^{*} w\right)=\phi_{u}^{*}(\underline{D} w)$, where $\underline{D} w$ denotes the projection to S_{u}^{*} of the Lie derivative of w with respect to \underline{l}. Our entire discussion relies on the fact that the radius of S_{0} is negligible in comparison to the radius of S_{0}^{*}. To make precise limit statements, we think of d^{*} as tending to ∞ so that the region B^{*} exhausts Σ_{0}. Then S_{0}^{*} moves to the infinite future along C_{0}^{+}and its radius $r_{0}^{*} \rightarrow \infty$. As this happens the image by ϕ_{0} of each point on S^{*} is to trace a generator of C_{0}^{+}. Then $\phi_{0}^{*}\left(r^{-2} \gamma\right)$, the pullback to S^{2} of the induced metric on S_{0}^{*} rescaled by $r^{-2}=r_{0}^{*-2}$, converges to a metric γ^{0} on S^{2} Gauss curvature $K^{0}=1$. The metric γ^{0} is therefore isometric to the standard metric on S^{2}. In fact, for each fixed $u, \tilde{\gamma}=\phi_{u}^{*}\left(r^{-2} \gamma\right)$, the pullback to S^{2} of the induced metric on S_{u}^{*} rescaled by $r^{-2}=r^{*-2}$, converges to γ^{0}, and $\tilde{\boldsymbol{Y}}$, the covariant derivative of $\tilde{\gamma}$, converges to ∇^{0}, the covariant derivative of γ^{0}, while $\phi_{u}^{*}\left(r^{2} / K\right)$, the Gauss curvature of $\phi_{u}^{*}\left(r^{-2} \gamma\right)$, converges to 1. Furthermore, for each fixed $u, \phi_{u}^{*}(r \operatorname{tr} \chi) \rightarrow 2$ and $\phi_{u}^{*}(r \operatorname{tr} \underline{\chi}) \rightarrow-2$ as r_{0}^{*} and therefore r^{*} tends to infinity. If we define on each S_{u}^{*} the function $h=r \operatorname{tr} \chi-2$, then for each fixed $u, \phi_{u}^{*}(r h)$ tends to a function H on S^{2}. On the other hand, $\phi_{u}^{*} \hat{\chi}$ and $\phi_{u}^{*}\left(r^{-1} \underline{\hat{\chi}}\right)$ tend to Σ and Ξ, respectively, two-covariant symmetric tensor fields on S^{2} which are trace-free relative to γ^{0}. Also, $\phi_{u}^{*}(r \zeta)$ tends to Z, a one-form on S^{2}, and $\phi_{u}^{*}\left(r^{3} \mu\right)$ and $\phi_{u}^{*}\left(r^{3} \underline{\mu}\right)$ tend to functions N and \underline{N} on S^{2}, respectively, while $m\left(S_{u}^{*}\right)$ converges to $M(u)$, the Bondi mass. Moreover, by the main
theorem of [4], for each fixed $u, \phi_{u}^{*}\left(r^{-1} \underline{\alpha}\right), \phi_{u}^{*}(r \underline{\beta})$, $\phi_{u}^{*}\left(r^{3} \rho\right)$, and $\phi_{u}^{*}\left(r^{3} \sigma\right)$ converge to A, B, P, and $Q, \overline{\text { re- }}$ spectively, as $r_{0}^{*} \rightarrow \infty$, while $|\alpha|,|\beta|=O\left(r^{*-7 / 2}\right)$. Here A is a two-covariant symmetric tensor field on S^{2} which is trace-free relative to γ^{0}, B is a one-form, and P and Q are functions on S^{2}.

The null Codazzi equation and its conjugate read

$$
\begin{aligned}
& \mathrm{d} / v \hat{\chi}+\hat{\chi} \cdot \zeta=\frac{1}{2}(\nabla \operatorname{tr} \chi+\operatorname{tr} \chi \zeta)-\beta \\
& \mathrm{d} / v \underline{\hat{\chi}}-\underline{\hat{\chi}} \cdot \zeta=\frac{1}{2}(\nabla \operatorname{tr} \underline{\chi}-\operatorname{tr} \underline{\chi} \zeta)+\underline{\beta}
\end{aligned}
$$

Multiplying the first equation by r^{2} and the second by r, pulling them back to S^{2} by ϕ_{u}, and taking the limit $r_{0}^{*} \rightarrow \infty$, we obtain, making use of the above results, the following equations on S^{2} :

$$
\begin{align*}
& \mathrm{d} \not v^{0} \Sigma=\frac{1}{2} \nabla^{0} H+Z, \tag{1}\\
& \mathrm{~d} \not v^{0} \Xi=B . \tag{2}
\end{align*}
$$

In view of the Gauss equation of $S_{u}^{*}, K=\frac{1}{4} \operatorname{tr} \chi \operatorname{tr} \chi$ $-\frac{1}{2} \hat{\chi} \cdot \underline{\hat{\chi}}=-\rho$, and the definition of $\underline{\mu}$, the torsion of S_{u}^{*} satisfies the Hodge system:

$$
\operatorname{chrl} \zeta=\sigma-\frac{1}{2} \hat{\chi} \wedge \underline{\hat{x}}, \quad \mathrm{~d} / v \zeta=\underline{\mu}+\rho-\frac{1}{2} \hat{\chi} \cdot \underline{\hat{x}} .
$$

The limit as $r_{0}^{*} \rightarrow \infty$ of this system rescaled by r^{3} is the following Hodge system on S^{2} :

$$
\begin{equation*}
\operatorname{chrl}^{0} Z=Q-\frac{1}{2} \Sigma \wedge \Xi, \mathrm{~d} \not v^{0} Z=\underline{N}+P-\frac{1}{2} \Sigma \cdot \Xi \tag{3}
\end{equation*}
$$

Along $C^{*-}, \operatorname{tr} \chi$ propagates according to

$$
\underline{D} \operatorname{tr} \chi+\frac{1}{2} \operatorname{tr} \underline{\chi} \operatorname{tr} \chi=-2 \mu+2|\zeta|^{2} .
$$

The limit of the corresponding propagation equation for $r h$ is, simply,

$$
\begin{equation*}
\frac{\partial H}{\partial u}=0 . \tag{4}
\end{equation*}
$$

The propagation along C^{*-} of $\hat{\chi}$ obeys

$$
\underline{D} \hat{\chi}-\frac{1}{2} \operatorname{tr} \underline{\chi} \hat{\chi}=-\frac{1}{2} \operatorname{tr} \chi \underline{\hat{x}}+\hat{\mathscr{L}}_{\zeta} \gamma+2 \zeta \zeta-|\zeta|^{2} \gamma
$$

where the caret denotes the operation of taking the trace-free part of a two-covariant symmetric tensor on S_{u}^{*} and \mathcal{L}_{ζ} denotes the Lie derivative with respect to the vector field corresponding to the one-form ζ. Taking the limit $r_{0}^{*} \rightarrow \infty$ we obtain

$$
\begin{equation*}
2 \frac{\partial \Sigma}{\partial u}=-\Xi \tag{5}
\end{equation*}
$$

The propagation law of $\underline{\hat{\chi}}$ along $C^{*-}, \underline{\hat{D}} \hat{\hat{\chi}}=-\underline{\alpha}$, rescaled by r^{-1}, becomes, in the limit $r_{0}^{*} \rightarrow \infty$,

$$
\begin{equation*}
2 \frac{\partial \Xi}{\partial u}=-A \tag{6}
\end{equation*}
$$

Finally, the propagation law of $\underline{\mu}$ along C^{*-},

$$
\begin{aligned}
\underline{D} \underline{\mu}+\frac{3}{2} \operatorname{tr} \underline{\chi} \underline{\mu}= & -\frac{1}{4} \operatorname{tr}|\underline{\hat{\chi}}|^{2}+\frac{1}{2} \operatorname{tr} \underline{\chi}|\zeta|^{2} \\
& -2 \operatorname{dyv}(\underline{\hat{\chi}} \cdot \zeta)-\nabla \operatorname{tr} \underline{\chi} \cdot \zeta
\end{aligned}
$$

rescaled by r^{3}, yields in the limit the asymptotic propagation law

$$
\begin{equation*}
2 \partial \underline{N} / \partial u=-\frac{1}{2}|\Xi|^{2} . \tag{7}
\end{equation*}
$$

Since we have $\bar{N}=\underline{\bar{N}}=2 M$ (the overbar denotes mean value on S^{2}), the integral of (7) over S^{2} is the Bondi mass loss formula [5]:

$$
\begin{equation*}
\frac{\partial M}{\partial u}=-\frac{1}{32 \pi} \int_{S^{2}}|\Xi|^{2} d \mu_{\gamma^{0}} . \tag{8}
\end{equation*}
$$

According to the main theorem of [4] we have $A=O\left(|u|^{-5 / 2}\right), B=O\left(|u|^{-3 / 2}\right)$ as $|u| \rightarrow \infty$. Equation (2) then implies that $\Xi=O\left(|u|^{-3 / 2}\right)$ as $|u| \rightarrow \infty$. Therefore by (5), Σ tends to limits Σ^{+}and Σ^{-}as $u \rightarrow+\infty$ and $u \rightarrow-\infty$, respectively, and $\Sigma^{+}-\Sigma^{-}=-\frac{1}{2} \int{ }_{-\infty}^{+\infty} \Xi d u$. Let us define on S^{2} the function

$$
\begin{equation*}
F=\frac{1}{8} \int_{-\infty}^{+\infty}|\Xi|^{2} d u \tag{9}
\end{equation*}
$$

In view of (8), $F / 4 \pi$ is the total energy radiated to infinity in a given direction, per unit solid angle. By (7), \underline{N} tends to limits \underline{N}^{+}and \underline{N}^{-}as $u \rightarrow+\infty$ and $u \rightarrow-\infty$, respectively, and we have $\underline{N}^{+}-\underline{N}^{-}=-2 F$. The integrals of Eqs. (3) on S^{2} are

$$
\bar{Q}=\frac{1}{2} \overline{\Sigma \wedge \Xi}, \quad \bar{P}=-\overline{\underline{N}}+\frac{1}{2} \overline{\Sigma \cdot \Xi} .
$$

According to the main theorem of [4], under the hypotheses stated therein, we have $P-\bar{P}, Q-\bar{Q}$ $=O\left(|u|^{-1 / 2}\right)$ as $|u| \rightarrow \infty$; therefore the limits $(P-\bar{P})^{+}$, $(P-\bar{P})^{-},(Q-\bar{Q})^{+}$, and $(Q-\bar{Q})^{-}$all vanish. Now while this is always true for the second pair, it is true for the first pair only in the case that the final center-of-mass frame is at rest relative to the initial center-of-mass frame and the initial and final velocities of the masses in the corresponding frames are negligible. In general $(P-\bar{P})^{+}$and $(P-\bar{P})^{-}$are determined from sums of boosted Schwarzschild solutions. For example, in the case of two bodies initially in nonrelativistic motion, which coalesce to one body of final rest mass M^{+}and with final (recoil) velocity V relative to the initial center-of-mass frame, we have $(P-\bar{P})^{-}=0$ while at $\xi \in S^{2}$ $\subset \Re^{3}$,
$(P-\bar{P})^{+}(\xi)=-2 M^{+}\left[\frac{\left(1-|V|^{2}\right)^{3 / 2}}{(1-\langle\xi, V\rangle)^{3}}-\frac{1}{\left(1-|V|^{2}\right)^{1 / 2}}\right]$.

$$
\frac{-1}{2 \pi} \int_{\left|\xi^{\prime}\right|=1}\left(F-F_{[1]}\right)\left(\xi^{\prime}\right) \frac{\left\langle X, \xi^{\prime}\right\rangle\left\langle Y, \xi^{\prime}\right\rangle-\frac{1}{2}\langle X, Y\rangle\left|\Pi \xi^{\prime}\right|^{2}}{1-\left\langle\xi, \xi^{\prime}\right\rangle} d \mu_{\gamma^{0}}\left(\xi^{\prime}\right)
$$

When matter (i.e., electromagnetic or neutrino) radiation is present then if T is the energy tensor of matter, $\phi_{u}^{*}\left(r^{2} \frac{1}{4} T(\underline{l}, \underline{l})\right)$ tends to a limit E as $r_{0}^{*} \rightarrow \infty$ and in (7)-(9) $|\Xi|^{2}$ is replaced by $|\Xi|^{2}+32 \pi E$.

We now turn to discuss a laser interferometer grav-itational-wave detector. This consists of a reference mass m_{0} and two test masses m_{1} and m_{2} initially at rest on a plane, with m_{1} and m_{2} at equal distances d_{0} and at right

Making use of the results above we conclude from the system (3) that Z tends to limits Z^{+}and Z^{-}as $u \rightarrow+\infty$ and $u \rightarrow-\infty$, respectively, and $Z^{+}-Z^{-}$ satisfies the Hodge system:

$$
\begin{aligned}
\operatorname{chrrl}^{0}\left(Z^{+}-Z^{-}\right)= & 0 \\
\mathrm{~d} / v^{0}\left(Z^{+}-Z^{-}\right)= & (P-\bar{P})^{+}-(P-\bar{P})^{-} \\
& +\underline{N}^{+}-\underline{N}^{-}-\underline{\bar{N}}^{+}+\underline{\bar{N}}^{-} .
\end{aligned}
$$

Hence, defining the function Φ to be the solution, of vanishing mean, of the equation

$$
\begin{equation*}
\Delta^{0} \Phi=(P-\bar{P})^{+}-(P-\bar{P})^{-}-2(F-\bar{F}) \tag{10}
\end{equation*}
$$

on S^{2}, we have

$$
\begin{equation*}
Z^{+}-Z^{-}=\nabla^{0} \Phi \tag{11}
\end{equation*}
$$

while by (1), in view of (4), the difference $\Sigma^{+}-\Sigma^{-}$ satisfies the equation

$$
\begin{equation*}
\mathrm{d} \not \mathrm{v}^{0}\left(\Sigma^{+}-\Sigma^{-}\right)=Z^{+}-Z^{-} . \tag{12}
\end{equation*}
$$

The above three equations determine $\Sigma^{+}-\Sigma^{-}$uniquely. Their integrability condition is that Φ has vanishing projection $\Phi_{(1)}$ on the first eigenspace of $\boldsymbol{\Delta}^{0}$. Thus,

$$
\begin{equation*}
P_{(1)}^{+}-P_{(1)}^{-}-2 F_{(1)}=0, \tag{13}
\end{equation*}
$$

which expresses the law of conservation of linear momentum. In the example of binary coalescence, $P_{(1)}^{+}$ $=-6\langle\xi, V\rangle M^{+} /\left(1-|V|^{2}\right)^{1 / 2}, \quad P(1)=0$, and (13) says that the recoil momentum is equal and opposite to the momentum carried off by the radiation. The solution $\left(\Sigma^{+}-\Sigma^{-}\right)(X, Y)$, of (10)-(12), evaluated at an arbitrary pair X, Y of vectors in \Re^{3} tangent to S^{2} at ξ, is the sum of a "linear" contribution from $\left(P-P_{[1]}\right)^{+}$ $-\left(P-P_{[1]}\right)^{-}$(the subscript [1] denotes projection on the sum of the zeroth and first eigenspaces of Δ^{0}, the projection on the zeroth eigenspace being the mean value), which has long been known (in a different form) in the slow motion limit [3], and which in the example of the binary coalescence is given by

$$
-\frac{2 M^{+}}{\left(1-|V|^{2}\right)^{1 / 2}} \frac{\langle X, V\rangle\langle Y, V\rangle-\frac{1}{2}\langle X, Y\rangle|\Pi V|^{2}}{1-\langle\xi, V\rangle}
$$

(Π is the projection to plane orthogonal to ξ), and a "nonlinear" contribution from $F-F_{[1]}$ which is equal to
angles from m_{0}. The masses are free or are suspended by pendulums according to whether the experiment is performed in space or on the Earth's surface. In any case, for time intervals much shorter than the period of each of the suspending pendulums the motion of the masses on the horizontal plane can be considered free. Any difference in the light travel times between m_{0} and m_{1}
and m_{2}, respectively, results in a difference of phase of the laser light at m_{0}. We may think of m_{0} as describing a timelike geodesic Γ_{0} in spacetime while m_{1} and m_{2} describe neighboring timelike geodesics Γ_{1} and Γ_{2}, respectively. The mass m_{0} defines a local inertial frame as follows. With T being the unit future-directed tangent vector field of Γ_{0} and t the proper time along Γ_{0}, let, for each t, H_{t} be the spacelike geodesic hyperplane through the point $\Gamma_{0}(t)$ orthogonal to T. Choosing an orthonormal basis $\left(E_{1}, E_{2}, E_{3}\right)$ at a point on Γ_{0} orthogonal to T, we parallel propagate this basis along Γ_{0}. Then each point p in a neighborhood of Γ_{0} is assigned coordinates (t, x^{1}, x^{2}, x^{3}), where t corresponds to the geodesic hyperplane H_{t} on which p lies and $\left(x^{1}, x^{2}, x^{3}\right)$, determine the vector $X=x^{1} E_{1}+x^{2} E_{2}+x^{3} E_{3}$ which is the tangent vector at $\Gamma_{0}(t)$ of the spacelike geodesic generator of H_{t} along which p is found at parameter distance 1 . The distance of p from Γ_{0} is the corresponding arc length $d=\left[\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}\right]^{1 / 2}$. The deviation of the metric components in this coordinate system from those of the corresponding Minkowski metric are of $O\left(R d^{2}\right)$, where R denotes curvature components at Γ_{0}. Therefore the deviation from unity of the ratios of the distances d_{1} and d_{2} of m_{1} and m_{2} from m_{0} to the corresponding light travel times is of $O\left(R d_{0}^{2}\right)$. Now the fractional change $\Delta d / d_{0}$ of the distances d_{1} and d_{2} due to the passage of a gravitational wave shall be of $O\left(R \tau^{2}\right)$, where τ is the time scale over which the curvature varies significantly. Thus if the ratio d_{0} / τ is assumed to be small, differences in light travel time accurately reflect differences in distance. Furthermore, the same assumption allows us to replace the geodesic equation for Γ_{1} and Γ_{2} by the Jacobi equation: $d^{2} x^{i} / d t^{2}=R_{i T_{j} T} x^{j}$, where $R_{i T_{j} T}(t)$ are the components of the curvature along Γ_{0} in the frame (T, E_{1}, E_{2}, E_{3}). We choose the vectors E_{1} and E_{2} in the direction of the masses m_{1} and m_{2} initially. The (x^{1}, x^{2}) plane is then the horizontal plane and the initial conditions are $x_{(A)}^{i}(-\infty)=d_{0} \delta_{A}^{i}, \dot{x}_{(A)}^{i}(-\infty)=0$, where we denote by x_{A}^{i} the coordinates of the test mass m_{A}, $A=1,2$. Suppose for simplicity that the source is in the direction of E_{3}, namely, the vertical. Then the horizontal plane is tangent to the surfaces S_{u}^{*} and the null normals l and \underline{l} coincide with the vectors $T-E_{3}$ and $T+E_{3}$, respectively. Our results on the asymptotic behavior of the curvature components then imply that $\ddot{x}_{(A)}^{3_{A}}=O\left(r^{-2}\right)$, $\ddot{x}{ }_{(C)}^{A}=-\frac{1}{4} r^{-1} A_{A B} x^{B}{ }_{C}+O\left(r^{-2}\right)$. Here, $A_{A B}$ are the components of A in the frame ($\tilde{E}_{1}, \tilde{E}_{2}$) on S^{2} defined by $r E_{A}=\phi_{u}^{\prime} \tilde{E}_{A}$. This frame is orthonormal relative to the metric $\tilde{\gamma}$, and hence, in the limit $r_{0}^{*} \rightarrow \infty$, also relative to γ^{0}. In view of the initial conditions, we have, to leading
order in $r^{-1}, x_{(A)}^{3_{A}}=0$; therefore the motion is confined to the horizontal plane. Also, since the fractional displacements shall be negligible, we can replace the coordinates on the right-hand side by their initial values to obtain $\ddot{x}_{(B)}^{A}=-\left(d_{0} / 4 r\right) A_{A B}$. Now, the retarded time u can be identified with the proper time t along Γ_{0}. Therefore, integrating once and using (6) and the fact that $\Xi \rightarrow 0$ as $u \rightarrow-\infty$ we obtain $\dot{x}_{(B)}^{A}=\left(d_{0} / 2 r\right) \Xi_{A B}$, where $\Xi_{A B}$ are the components of Ξ in the frame $\left(\tilde{E}_{1}, \tilde{E}_{2}\right)$. The fact that $\Xi \rightarrow 0$ as $u \rightarrow+\infty$ implies that the test masses return to rest after the passage of the gravitational wave. On the other hand, integrating again and using (5), the displacements of the test masses at proper time t from their original positions are given by

$$
x_{(B)}^{A}(t)-x_{(B)}^{A}(-\infty)=-\left(d_{0} / 2 r\right)\left[\Sigma_{A B}(t)-\Sigma^{-}\right]
$$

Taking the limit $t \rightarrow \infty$ we conclude that the test masses suffer permanent displacements given by

$$
\begin{equation*}
\Delta x_{(B)}^{A}=-\left(d_{0} / r\right)\left(\Sigma_{A B}^{+}-\Sigma_{A B}^{-}\right) . \tag{14}
\end{equation*}
$$

The difference on the right-hand side of (14) contains a nonlinear effect, determined, as we have shown above, by the function F which is quadratic in Ξ. Now the maximal value of $\left|\Sigma(t)-\Sigma^{-}\right|$is of the order of the maximal kinetic energy of the bodies constituting the source, while F, and therefore also $\left|\Sigma^{+}-\Sigma^{-}\right|$, is of the order of the total radiated energy. Consequently for a binary coalescence the nonlinear permanent displacement is of the same order of magnitude as the maximal displacement during the passage of the wave and builds up over the time scale over which the energy is radiated.

The author wishes to thank K. S. Thorne and J. P. Ostriker for help in the exposition. This work is an outgrowth of a collaboration with Sergiu Klainerman. The author is supported in part by NSF Grant No. PHY 9006681.
[1] V. B. Braginsky and L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 89, 744 (1985) [Sov. Phys. JETP 62, 427 (1986)].
[2] V. B. Braginsky and K. S. Thorne, Nature (London) 327, 123 (1987).
[3] Ya. B. Zel'dovich and A. G. Polnarev, Astron. Zh. 51, 30 (1974) [Sov. Astron. 18, 17 (1974)].
[4] D. Christodoulou and S. Klainerman, "The Global Nonlinear Stability of Minkowski Space," Ann. Math. Stud. (to be published).
[5] H. Bondi, and M. G. J. van Burg, A. W. K. Metzner, Proc. Roy. Soc. London A 269, 21-48 (1962).

