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Nonlinear Nature of Gravitation and Gravitational-Wave Experiments
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It is shown that gravitational waves from astronomical sources have a nonlinear effect on laser inter-
ferometer detectors on Earth, an effect which has hitherto been neglected, but which is of the same order
of magnitude as the linear effects. The signature of the nonlinear effect is a permanent displacement of
test masses after the passage of a wave train.

PACS numbers: 04.30.+x, 04.80.+z

The need of taking full account of the nonlinearity of
Einstein's equations when one wants to study the genera-
tion of gravitational waves from strong sources is general-
ly recognized. However, since the sources are at enor-
mous distances from the Earth, the amplitude of the
waves when they reach the detector is so small that it has
always been assumed that when treating the waves in the
Earth's neighborhood the linearized theory suffices. It is
the purpose of this Letter to show that this assumption is
in error.

The nonlinearity of Einstein's equations manifests itself
in a permanent displacement of the test masses of a laser
interferometer detector after the passage of a wave train.
Such a permanent displacement, called the "memory" of
the gravitational-wave burst [1,2], has long been known
to occur [3] within the framework of the linearized theory
as a result of an overall change of the second time deriva-
tive of the source's quadrupole moment or equivalently of
an overall change of the linear momenta of the constitu-
ent bodies. As this was the only known cause of a
memory effect, it was thought that typical sources, i.e.,
the coalescense of a neutron star binary, in which little
linear momentum is radiated away, will produce bursts
with negligible memory. However, we show in this Letter
that every burst has a nonlinear memory, due to the cu-
mulative contribution of the effective stress of the gravi-
tational waves themselves. Moreover, for a binary coales-
cense, the nonlinear memory is of the same order of mag-
nitude as the maximal amplitude of the dynamical part of
the burst.

Our treatment is based on the rigorous analysis of the
asymptotic behavior of the gravitational field given in [4].
In that work we considered asymptotically flat initial data
for the vacuum Einstein equations which correspond to a
Cauchy hypersurface of vanishing linear momentum. We
showed that if the initial data satisfy a smallness condi-
tion then they give rise to a geodesically complete space-
time. We analyzed in detail the asymptotic behavior of
the solutions at null and timelike infinity. The results
which have to do with the behavior at null infinity, which
is what concerns us here, are largely independent of the
smallness condition which was introduced to ensure com-
pleteness. Among these results is the formula for the
difference of the limits Z and X of the asymptotic
shear Z of outgoing null hypersurfaces C,+ as u tends to

+~ and —~, respectively, which plays a crucial role in
the present Letter. The rigorous derivation of this formu-
la given in [4] relies heavily on the results developed in

that work. For this reason we shall give below a simple
derivation of the formula which is as much as possible
self-contained.

Let So be a spherical spacelike surface surrounding the
source in a neighborhood of the intersection of the source
with the boundary of the past of an event p of observation
at the Earth, and lying in an asymptotically flat Cauchy
hypersurface Zp of vanishing linear momentum. Let Cp+

be the outer boundary of the future of Sp. Denoting by
Bp the interior of Sp in Zp, let, for each d & 0, Bd be the
set of points in Xp whose distance from Bp is less than d.
We define 8*=Bd. to be the smallest region Bd contain-
ing the past of p in Zti. We then define C* to be the
boundary of the domain of dependence of B*. Then p
lies in a neighborhood of the spherical spacelike surface
Sp of intersection of Cp+ with C* . We suppose that Sp
is chosen so that the generators of Cp+ have no future end
points.

Consider an arbitrary closed spacelike surface S in

spacetime. We denote by y the induced metric on S and
by dp~, V; and K, the area element, covariant derivative,
and Gauss curvature of y, respectively. We define the ra-
dius r of S by r =v'2/4tr, where A is the area of S. Let I
and l be, respectively, outgoing and incoming future-
directed null normal vector fields to S subject to the nor-
malization condition g(l, l) = —2. Then l and l are
unique up to the transformation l al, l a 'l where
o is a positive function on S. The null second fundamen-
tal form g and the conjugate null second fundamental
form g of S are two-covariant symmetric tensor fields on
S defined by g(X, Y) =g(V~l, Y), g(X, Y) =g(V+l, Y) for
any pair of vectors X, Y tangent to S at a point. We
denote by g and g the trace-free parts of g and g, respec-
tively. The torsion g of S is the one form on S defined by
g(X) = —,

'
g(V&l, l) for any vector X tangent to S at a

point. The mass aspect function p and the conjugate
mass aspect function p of S are functions on S defined by
p =K+ —,

'

tetr@
—iv), p =K+ 4 trgtrg+djvg. Also

the spacetime curvature at S decomposes into the two-
covariant symmetric tensor fields a, a, the one-forms P,P,
and the functions p, a on S, given by a(X, Y) =R(X,
l, Y, l), a(X, Y) =R(X,l, Y, l), P(X) = —,

' R(X,l, l, l), P(X)
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= —. R(X,l, l, l), p =
4 R(l, l, l, l), oe(X, Y) = —.

' R(X, Y, l,
l ), where X,Y are arbitrary vectors tangent to S at a
point and t. is the area two-form of S. If trgtrg &0 we
can fix I and l by requiring that try+try =0. With this
choice, the unit timelike normal to S given by
T= —,

' (l+l) is the binormal of S. The Hawking mass m

of S is given by

m = (r/2) 1+ (I/16m) try try dp,
and is independent of the ambiguity in the choice of l and
I. If S has the topology of S, then by the Gauss-Bonnet
formula we have j s p dp„=fs p dp~=8rrm/r.

We now return to the spherical surface So =Co+

ClC* . We choose l and l on So so that —,
' (l+l) =T is

the binormal of So. We then extend l to C* to be the
null geodesic vector field whose integral curves are the
generators of C* and we consider on C* the level sur-
faces of the aSne distance from So. We then define the
retarded time function u on C* by the requirement that
on each level surface, u =2(ro r*), wh—ere r* is the ra-
dius of the level surface and ro is the radius of So. We
use the value of u to label a level surface S„*.The vector
field I then extends to C* by the condition that on each
S„*,I is the unique outgoing future-directed null normal
to S„*conjugate to l. Let &0 be a diffeomorphism of S
onto So and let, for each u, p„bethe diffeomorphism of
S onto S„*such that p„&&0 ' is the diffeomorphism of
So onto S„*given by the fiow of l on C* . If w is a p-
covariant tensor field in spacetime we then have 2(8/
Bu)(g„*w)=P„*(Dw),where Dw denotes the projection to
S„ofthe Lie derivative of w with respect to l. Our entire
discussion relies on the fact that the radius of So is negli-
gible in comparison to the radius of So. To make precise
limit statements, we think of d* as tending to ~ so that
the region B* exhausts Zo. Then So moves to the infinite
future along Co+ and its radius ro ~. As this happens
the image by &0 of each point on S* is to trace a genera-
tor of Co+. Then po (r y), the pullback to S of the in-
duced metric on So rescaled by r =ro, converges to
a metric y on S Gauss curvature A =1. The metric y
is therefore isometric to the standard metric on S . In
fact, for each fixed u, y=p„*(r y), the pullback to S
of the induced metric on S,* rescaled by r =r*, con-
verges to y, and V; the covariant derivative of y, con-
verges to V, the covariant derivative of y, while
p„*(r/K), the Gauss curvature of p„*(r y), converges
to 1. Furthermore, for each fixed u, P„*(rtry) 2 and
p„*(rtry) —2 as ro* and therefore r* tends to infinity.
If we define on each S„*the function h =rtrg —2, then
for each fixed u, p„*(rh)tends to a function H on S . On
the other hand, p„gand p„*(r 'g) tend to Z and:-, re-

spectively, two-covariant symmetric tensor fields on S 2

which are trace-free relative to y . Also, p„*(rg)tends to
Z, a one-form on S, and p„*(rp) and p„*(rp) tend to
functions N and N on S, respectively, while m(S„*)con-
verges to M(u), the Bondi mass. Moreover, by the main

theorem of [4], for each fixed u, p„(r 'a), p„*(rLj),
p„(rp), and p„(ro) converge to A, B, P, and Q, re-
spectively, as ro ~, while lcl, lPl =O(r* ~ ). Here
8 is a two-covariant symmetric tensor field on S which
is trace-free relative to y, B is a one-form, and P and Q
are functions on S .

The null Codazzi equation and its conjugate read

dgvg+g g = z' (V'try+ trig) —P,

The limit as ro ~ of this system rescaled by r is the
following Hodge system on S:

cylrl Z=Q ——'ZA:-, de Z=N+P ——, Z:-. (3)

Along C*, try propagates according to

Dtrg+ —,
'

tetr@ =
—2p+2lgl

The limit of the corresponding propagation equation for
rh is, simply,

H
u

The propagation along C* of g obeys

~D
——«sg = —-' «xi+ &&y+ 2Rl 0l 'y, ' —

(4)

where the caret denotes the operation. of taking the
trace-free part of a two-covariant symmetric tensor on
S„*and L~ denotes the Lie derivative with respect to the
vector field corresponding to the one-form g. Taking the
limit ro ~ we obtain

Z
M

u
J%

The propagation law of j along C*,~D"= —a, rescaled
by r ', becomes, in the limit ro

2 (6)
Bu

Finally, the propagation law of p along C*

~D+ l «zp = —l «zlil'+ l «zlCI'

—2dkv(g. () —&«g (,

djvg —g (= —, (Stre —
track) +p .

Multiplying the first equation by r and the second by r,
pulling them back to S by p„,and taking the limit
ro ~, we obtain, making use of the above results, the
following equations on S:

de Z = —,
'

V H +Z,
div ==B.

In view of the Gauss equation of S„*,E = —,
' try try

—
—,
'

g g= —p, and the definition of p, the torsion of S„*
satisfies the Hodge system:

cgrlb=o —T~gAg, dgvg=p+p ——, g g.

1487



VOLUME 67, NUMBER 12 PHYSICAL REVIEW LETTERS 16 SEPTEMBER 1991

rescaled by r, yields in the limit the asymptotic propaga-
tion law

2 an't/a = —
I I=-I'

Since we have W =IV =2M (the overbar denotes mean
value on S ), the integral of (7) over 5 is the Bondi
mass loss formula [5]:

Making use of the results above we conclude from the
system (3) that Z tends to limits Z+ and Z as
u + ~ and u —~, respectively, and Z+ —Z
satisfies the Hodge system:

ctlrl (Z+ —Z ) =0,
de'(Z' —Z ) =(P —P)+ —(P —P)

+N+ —N —N +N

According to the main theorem of [4] we have
W =O(lul '"), a=o(lul "') as lul- . Equation
(2) then implies that -==0(lul ) as lul ~. There-
fore by (5), X tends to limits Z+ and Z as u +~ and
u —~, respectively, and Z+ —Z = ——,

' f—+:-du.
Let us define on 5 the function

8 @=(P P)+ ——(P —P) —2(F F)— (10)

on S, we have

Z+ —Z =V@,

Hence, defining the function @ to be the solution, of van-
ishing mean, of the equation

l:-l'du. (9) while by (1), in view of (4), the difference Z —X
satisfies the equation

In view of (8), F/4x is the total energy radiated to
infinity in a given direction, per unit solid angle. By (7),
N tends to limits N+ and N as u +~ and
u —~, respectively, and we have N+ —N = —2F.
The integrals of Eqs. (3) on S are

dfv'(Z+ —Z ) =Z+ —Z (12)

The above three equations determine Z —Z uniquely.
Their integrability condition is that @ has vanishing pro-
jection @[1&on the first eigenspace of $ . Thus,

~(l ) ~( I ) 2F (1)

which expresses the law of conservation of linear momen-
tum. In the example of binary coalescence, P [+1&

= —6(g, v)M+/(1 —
l vl ) ', P[1i =0, and (13) says

that the recoil momentum is equal and opposite to the
momentum carried oA by the radiation. The solution
(Z+ —Z )(X,Y), of (10)-(12), evaluated at an arbi-
trary pair X, Y of vectors in % tangent to 5 at g, is the
sum of a "linear" contribution from (P —P [11)

+
—(P —P[1[) (the subscript [ll denotes projection on
the sum of the zeroth and first eigenspaces of $, the pro-
jection on the zeroth eigenspace being the mean value),
which has long been known (in a diA'erent form) in the
slow motion liinit [3], and which in the example of the
binary coalescence is given by

(~, v)&v, v) ——,
' &~, v) lnvl'

1
—(g, v)

2M+
(1 l Vl 2) 1/2

(II is the projection to plane orthogonal to g), and a
"nonlinear" contribution from F —F[1] which is equal to

1

(1 —
l Vl 2) 1»(P —P)+(g) = —2M+

(1 —((,V))

According to the main theorem of [4], under the hy-
potheses stated therein, we have P P, Q Q- —
=O(lul '~ ) as lul ~; therefore the limits (P P)+, —
(P —P), (Q —Q)+, and (Q —Q) all vanish. Now
while this is always true for the second pair, it is true for
the first pair only in the case that the final center-of-mass
frame is at rest relative to the initial center-of-mass
frame and the initial and final velocities of the masses in

the corresponding frames are negligible. In general
(P P)+ and (P —P)—are determined from sums of
boosted Schwarzschild solutions. For example, in the
case of two bodies initially in nonrelativistic motion,
which coalesce to one body of final rest mass M+ and
with final (recoil) velocity V relative to the initial center-
of-mass frame, we have (P —P) =0 while at g 6 5
~9

(~,g')(Y, g') ——, (~, Y) lflg'l'

„~,, ~, (F —F[ 1) (&')

When matter (i.e., electromagnetic or neutrino) radiation
is present then if T is the energy tensor of matter,
P„*(r 4 T(l, l)) tends to a limit F. as ro ~ and in

(»-(9) I=-I' is replaced by I:"I +32+E.
We now turn to discuss a laser interferometer grav-

itational-wave detector. This consists of a reference mass
mo and two test masses m] and m2 initially at rest on a
plane, with m~ and m2 at equal distances do and at right

dp, o(&') .

l
angles from mo. The masses are free or are suspended by
pendulums according to whether the experiment is per-
formed in space or on the Earth's surface. In any case,
for time intervals much shorter than the period of each of
the suspending pendulums the motion of the masses on
the horizontal plane can be considered free. Any
diff'erence in the light travel times between mo and ml
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and m2, respectively, results in a difference of phase of
the laser light at mo. We may think of mo as describing
a timelike geodesic I o in spacetime while m( and m2 de-
scribe neighboring timelike geodesics I ) and I z, respec-
tively. The mass mo defines a local inertial frame as fol-
lows. With T being the unit future-directed tangent vec-
tor field of I o and t the proper time along I 0, let, for each
t, H, be the spacelike geodesic hyperplane through the
point I o(r) orthogonal to T. Choosing an orthonormal
basis (E(,Ez,E3) at a point on I o orthogonal to T, we

parallel propagate this basis along I 0. Then each point p
in a neighborhood of I o is assigned coordinates
(t,x ',x,x ), where t corresponds to the geodesic hyper-
plane H, on which p lies and (x',x,x ), determine the
vector X=x'E~+x E2+x E3 which is the tangent vec-
tor at I o(t) of the spacelike geodesic generator of H,
along which p is found at parameter distance 1. The dis-
tance of p from I 0 is the corresponding arc length
d=[(x') +(x ) +(x ) ]'~. The deviation of the
metric components in this coordinate system from those
of the corresponding Minkowski metric are of O(Rd ),
where R denotes curvature components at I o. Therefore
the deviation from unity of the ratios of the distances d ~

and d2 of m( and m2 from mo to the corresponding light
travel times is of O(Rdo). Now the fractional change
Ad/do of the distances d( and dz due to the passage of a
gravitational wave shall be of O(Rr ), where r is the
time scale over which the curvature varies significantly.
Thus if the ratio do/r is assumed to be small, differences
in light travel time accurately reAect differences in dis-
tance. Furthermore, the same assumption allows us to re-
place the geodesic equation for I ] and I 2 by the Jacobi
equation: d x /dt =R;~~Tx~, where R;TJT(t) are the

components of the curvature along I 0 in the frame
(T,E),E2,E3). We choose the vectors E) and Eq in the
direction of the masses m~ and m2 initially. The (x', x )
plane is then the horizontal plane and the initial condi-
tions are xtz)( — ) =do6z, x(~)( —~) =0, where we
denote by x~ the coordinates of the test mass m~,
2 =1,2. Suppose for simplicity that the source is in the
direction of E3, namely, the vertical. Then the horizontal
plane is tangent to the surfaces 5,* and the null normals l
and I coincide with the vectors T —E3 and T+E3, re-
spectively. Our results on the asymptotic behavior of the
curvature components then imply that x(~) =0(r ),
x(c) = —

—,
' r 'A~I)x f'~) + O(r ). Here, A~g are the

components of A in the frame (E),Ez) on S defined by
rE~ =P„'E~. This frame is orthonormal relative to the
metric y, and hence, in the limit ro ~, also relative to
y . In view of the initial conditions, we have, to leading

order in r ', x(~) =0; therefore the motion is confined to
the horizontal plane. Also, since the fractional displace-
ments shall be negligible, we can replace the coordinates
on the right-hand side by their initial values to obtain
x(t)) = —(do/4r)A~g. Now, the retarded time u can be
identified with the proper time t along I o. Therefore, in-
tegrating once and using (6) and the fact that = 0 as
u —~ we obtain x(t)) =(do/2r):-gi), where =gp are
the components of:- in the frame (E(,E2). The fact that

0 as u +~ implies that the test masses return to
rest after the passage of the gravitational wave. On the
other hand, integrating again and using (5), the displace-
ments of the test masses at proper time t from their origi-
nal positions are given by

x(s) (t) —x(~) ( —~) = —(do/2r) [X~s(t) —Z ] .

Taking the limit t ~ we conclude that the test masses
suffer permanent displacements given by

~x(8) (do/I ) (~AB ~AB) (14)
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The difference on the right-hand side of (14) contains a
nonlinear effect, determined, as we have shown above, by
the function F which is quadratic in =. Now the maximal
value of ~Z(t) —Z

~
is of the order of the maximal kinet-

ic energy of the bodies constituting the source, while F,
and therefore also ~Z+ —Z ~, is of the order of the total
radiated energy. Consequently for a binary coalescence
the nonlinear permanent displacement is of the same or-
der of magnitude as the maximal displacement during the
passage of the wave and builds up over the time scale
over which the energy is radiated.
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