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Gap Anisotropy and Critical Temperature of Anisotropic Superconductors
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We study the gap anisotropy and critical temperature of superconductors within Eliashberg theory.
We consider a general anisotropy and spectral shape. In the attractive strong-coupling limit, we find a
qualitatively new universal result: The gap becomes isotropic. This sets severe constraints on standard
strong-coupling theories of high-T, superconductors. In the weak-coupling limit, the gap is sensitive to
anisotropy. We obtain exact results for the critical temperature both in the strong- and the weak-
coupling limits. We propose a simple natural interpolation in the intermediate regime.
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In the classical theory of superconductivity, it is a fair-
ly standard procedure' to assume that one deals with an
isotropic superconductor. The usual justification is that
one works in the dirty limit, where the scattering of the
electrons by impurities is fast enough and leads to an
effective averaging of the electronic properties over the
Fermi surface. Most standard superconducting materi-
als are indeed dirty enough to be in this limit. This situ-
ation is a convenient one because it is dificult to know
quantitatively the anisotropic properties of a compound
and how they aA'ect specifically the superconductive
properties. Nevertheless, starting with Markowitz and
Kadanoff and Clem, and continuing with Carbotte and
collaborators, properties of anisotropic superconductors
have been explored, mostly within the separable model
and oriented toward weakly coupled superconductors.

In the new high- T, compounds, anisotropy is expect-
ed to be important. Indeed, the layered Cu-based com-
pounds have very anisotropic electronic properties.
Here we consider only semiclassical or classical theories
of these superconductors, which we define as the theories
where there are Cooper pairs of degenerate fermions due
to an attractive interaction mediated by the exchange of
any kind of bosons, these bosons being phonons for clas-
sical theories and not phonons for semiclassical ones.
Provided that these bosons have an energy much smaller
than the Fermi energy, these superconductors can be de-
scribed within the framework of Eliashberg theory. ' For
high-T, compounds it is reasonable to expect a fairly an-
isotropic attractive interaction. Many semiclassical
theories do indeed predict very anisotropic interactions
as does the spin-bag model, for example. The electron-
phonon interaction is also likely to be anisotropic, due,
for example, to the expected screening anisotropy. How-
ever, in contrast to standard superconductors, it is un-
likely that high-T, compounds are in the dirty limit. In-
stead, they are rather clean, basically because the high
T, makes the coherence length shorter than the mean
free path. Therefore, eNective averaging should not
occur and the eAect of anisotropy must be considered in

these compounds.
In this paper we consider the gap anisotropy and the

critical temperature for anisotropic superconductors as
obtained from Eliashberg theory. We consider a general
anisotropy and spectral shape. We solve this problem
exactly in general terms both in the strongly attractive
regime and in the weak-coupling limit. For the inter-
mediate coupling region, we propose an interpolation for-
mula. This is the generalization of a similar formula
for isotropic superconductors which has proved to be
very successful both qualitatively and quantitatively.
This set of results provides a satisfactory answer for the
calculation of the critical temperature of anisotropic su-
perconductor s.

However, our most striking and interesting result is
about the anisotropy of the gap. We find that, whatever
the spectral or the angular dependence of the interaction,
the gap becomes isotropic in the strong-attractive-
coupling limit. This result turns out to be true not only
at T„but also at any temperature below T, . Physically
this is related to the well-known fact that, in this regime,
quasiparticle renormalization by the boson field tends to
decrease T, . In the strong-coupling limit, this competes
with the natural increase of T, when the strength of the
attractive interaction is increased. For anisotropic super-
conductors, quasiparticle renormalization tends to dom-
inate and its eAect can only be curbed by taking an iso-
tropic gap, that is, moving back to the isotropic situation
where these two opposite eAects essentially cancel.
Therefore, we come to the universal conclusion that, as
the attractive coupling strength increases, an anisotropic
superconductor tends to self-average and its gap tends to
become isotropic.

We believe that this result is of interest for high-T, su-
perconductors. Indeed, a classical interpretation requires
a fairly strong attractive coupling (say an average cou-
pling constant of the order of magnitude of 3). Our re-
sult shows that this implies necessarily a rather weak gap
anisotropy. There is, however, an obvious restriction to
our result. If two diAerent types of electrons are not
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coupled, there is clearly no reason for them to have the
same gap. If these two types of electrons are only weak-

ly coupled, the corresponding gaps can be rather diff'er-

ent. This might apply, for example, to YBazCu307
where the plane and chain electrons are possibly weakly
coupled. But strong coupling within each type of elec-
tron implies a weakly anisotropic gap for each. There-
fore, our result provides a stringent test of consistency
for classical strong-coupling theories of high-T, super-
conductors, since gap anisotropy might hopefully be
measured, for example, by angle-resolved high-resolution
photoemission' or temperature dependence of penetra-
tion depth in monocrystals. '' A strong anisotropy would
be very difficult to accommodate by these theories, and
would clearly favor semiclassical theories. Conversely, a
weakly anisotropic gap would eliminate many semiclassi-
cal theories and be fully consistent with classical ones.
Therefore, gap anisotropy turns out to be a test on the
mechanism of high-T, superconductivity. Interestingly
it is a qualitative test, in contrast with the comparison of
experiment for standard ratios [A(0)/T„ for example]
with their BCS weak-coupling values where uncertainty
in experiment and interpretation always leaves some
doubt.

Let us finally mention a possible indirect hint of weak

gap anisotropy. Most high-T, compounds have shown a
fairly stable critical temperature, rather independent of
the care in preparation, provided naturally that one ends
up with a well-defined compound (since T, is known to
be very sensitive to the oxygen content). Since early
methods of preparation are by necessity very rough, one
would expect the impurity and defect content to have
varied widely. For an anisotropic gap, the insensitivity
of T, to these conditions can only be understood by as-
suming either the dirty or the clean limit. We have seen
that the short coherence length makes the dirty limit un-
likely. On the other hand, it is hard to believe that,
despite this short coherence length, all the materials in-

cluding the probably very dirty early ones have been in
the clean limit. A more likely explanation is that these
compounds have a fairly isotropic gap which makes their
T, insensitive to impurity and defect content anyway.

Let us now give our results and sketch their deriva-
tion. ' In Eliashberg theory' the interaction of an aniso-
tropic superconductor is characterized by the generaliza-
tion a F(k, k', co) of the standard Eliashberg function,
which gives physically the coupling strength for scatter-
ing a fermion from k to k' on the Fermi surface by emis-
sion of a boson of energy m. The superconducting order
is characterized by an anisotropic gap function A„(k)
defined for imaginary Matsubara frequencies co„=(2n
+1)zT. In this imaginary-frequency formalism, the in-
teraction comes in through the spectral function:

Xp(k, k') = dco2coa F(k, k', co)/(co +co~),

where co~ =2zpT is the boson Matsubara frequency.

The gap function satisfies the following Eliashberg equa-
tions:

~„(k)Z„(k)=~rg d,k'X„(k,k')~ (k')

x [co +g (k')]

co„[Z„(k)—1]=zTQ d2k'X„(k, k') co
rn

4

(2)

Here the integration 12k' over the Fermi surface is

weighted by the fractional local density of states
[(2+) Npvi, ] ' and is normalized. Z„(k) is the normal
quasiparticle renormalization factor. At T„d„(k) goes
to zero and Eqs. (2) are linearized into

f„(k)A„(k)=g dzk'X„— (k, k')A (k'), (3a)

n

f„(k)=2n+1+ d2k' Xp(k, k')+2+k~(k, k'), (3b)
]

where A„(k)=A„(k)/~ co„~ and the expression for
f„(k)=~co„~Z„(k)/xT, an even function of co„, is given
for co„&0. We have omitted the Coulomb pseudopoten-
tial p* but we will comment in time on its effect.

We consider first the strong-coupling limit where the
(attractive) coupling strength and T, grow indefinitely
(naturally such a situation is unphysical and considered
only for mathematical purposes; reasonably large X are
considered below). In this regime one can see from the
argument below that T, grows at most as X ', as for the
isotropic case (X is an average coupling strength). Then,
for T,—k' Xp has for @&0 a finite limit for large k
while ko grows indefinitely. Therefore the term n=m
dominates in Eq. (3a) and f„(k)=Xp(k). We have
defined Xp(k) =fd 2k'kp(k, k') (we can forget the 2n + 1

term in f„since actually only the lowest values of ~co„~

matter in the strong-coupling limit). Therefore, we are
left with

fO

h„(k)„dpk'Xp(k, k') — d pk'kp(k, k') A„(k') =0 . (4)

d2k dpk'Xp(k, k') [A„(k) d„(k')] =0, (5)

where we have used Xp(k, k') =kp(k', k) from microrever-
sibility. Since A.o is positive, the left-hand side is always
positive. Equations (4) and (5) can only be satisfied by
taking A„(k) =d,„'(k') for any k and k'. Therefore, the

The first term comes from quasiparticle renormalization
and the second one from the pairing interaction. The
operator acting on A„(k) in Eq. (4) is diagonally dom-
inant and its eigenvalues are non-negative: The operator
from the first term dominates over the second one. This
is easily seen by summing Eq. (4) over k after multiply-
ing by d „(k). One obtains
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gap function (and the gap itself by analytic continua-
tion) is forced to be isotropic in this strong-coupling lim-
it. The only possible exception corresponds to a degen-
erate situation where two pieces S~ and S2 of the Fermi
surface are not coupled so that kp(k, k') =0 for all
k 6 St, k' 6 S2, as would be the case for two physically
separated superconductors. In practice this means that,
if we keep the coupling between S ~ and S2 weak,
whereas we let the coupling inside St and Sq grow
indefinitely, the gaps of S~ and S2 will not become equal.

Our result is readily generalized for temperature be-
low T„once it is realized that the n =m terms will again
dominate in Eq. (2) when the coupling strength grows
indefinitely. Then Eq. (2) reduces to

~,(k, k')
h, (k) d2k

, ~,(k, k')~„(k')
d2k' ', =0.J [rp2+P2(k&)] 1/2

Multiplying by 5, (k) [cp„+A„(k) ] '~ and summing
over k, we end up with an equation similar to Eq. (5)
which shows again that h„(k) =A„(k'). However, an ap-
parent problem is that the number of relevant n&m
terms increases when the temperature is lowered and
they can be neglected only by going to even higher cou-
pling. But, actually, one can see that the co =co„ terms
have the same eA'ect as the co =m„ term in forcing
h„(k) =A„(k'). In fact, we can obtain our result at
T=O by an argument very similar to the one given
above. Therefore, the gap is isotropic at any tempera-
ture.

Once we know that the gap is isotropic, the critical
temperature is easily obtained. Equation (3) is a Hermi-
tian eigenvalue problem. ' We treat all the terms of Eq.
(3) not included in Eq. (4) as a perturbation. The
zeroth-order terms [Eq. (4)l give an eigenspace corre-
sponding to isotropic h„(k), but the rp„dependence is

not given at this order. It is obtained by solving the ei-
genvalue problem [Eq. (3)] in this isotropic eigenspace.
But this problem is the same as finding T, in the strong-
coupling limit for an isotropic superconductor. There-
fore, T, is given in this regime by the standard result
T, =0.1824,rp ) '~, where (Xco ) is for

„dcod2k d2k'2roa F(k,k', cp) .

In other words, we have merely to use an average Eliash-
berg function corresponding to the isotropic gap. We
note also that, if we include the repulsive Coulomb pseu-
dopotential p*, this is necessarily a small term in the
strong-attractive-coupling limit: We should include it in

the first-order terms, not in zeroth order. Therefore, our
conclusions are unchanged: The gap is isotropic, but the
result for T, is affected by p* in the usual way.

Finally, one must naturally wonder what our result

means for an actual strong-coupling superconductor with
an average coupling constant k of, say, order 3. From
perturbation theory one expects the anisotropy to be of
order I/k. To see this explicitly, it is agreeable to treat
the strong-coupling situation in a slightly simplified way.
It is known that, ' in this regime, the terms ~rp„~ =zT of
h„(k) (which are equal) are the dominant ones, as can
be seen from Eq. (3). The other ones must be retained
quantitatively for exact results, but are not important
qualitatively. Keeping only these two terms Ap(k)

~ (k) —=A(k), multiplying Eq. (3a) by d, (k) (as-
sumed to be normalized), and summing over k, one ob-
tains

1+ -' J ~p(k, k') [z(k) -E(k')]'

~, (k, k')E(k)Z(k'), (7)

where the integral is over all the variables. As a rough
approximation, valid only for very large T, the right-
hand side may be written as

[2/(2n'T ) ]„coa F(k, k', ro )A (k )h (k') .

T, is the highest temperature for which Eq. (7) is

satisfied. Therefore, we want to minimize the left-hand
side which clearly leads to our result Z(k) = A(k'). We
set A(k) =I+ed(k), where e is expected to be small
since X& is large; d(k) is of order unity and satisfies
fd(k) =0. Inserting into Eq. (7) and maximizing T
with respect to e, one obtains

e=2 Xi(k, k')d(k') Xp(k, k')[d(k) —d(k')l

to lowest order, where we can use in A,
~ the zeroth-order

value of T, obtained above. Since k~ is of order 1, we see
that e and the gap anisotropy is indeed of order I/X
[d(k) could be obtained directly from Eq. (3)]. There-
fore, for X-3, the gap anisotropy is indeed reasonably
small.

Let us now turn to the weak-coupling limit. In this re-
gime we make no assumption on the sign of the effective
interaction. We solve the problem by iterating Eq. (3) in

a way similar to the isotropic case. ' The calculation is

naturally complicated by the additional k dependence,
but fortunately the singular behavior of the weak-
coupling limit leads to a k dependence for the gap func-
tion A„(k) independent of the frequency dependence.
We find ' that the k dependence of A„(k) is given by the
eigenvector B(k) of M(k, k') =Xp(k, k')/[I+). p(k)1 with
largest eigenvalue P. Then the frequency-dependent part
is handled in a way similar to the isotropic case. We ob-
tain for T, a result essentially identical formally to the
isotropic case:

T, = (2/gr)e '~
ro~,g exp( —I/P —R),

~here C is the Euler constant. This result is exact in the
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weak-coupling limit in the sense that the diA'erence for
lnT, between the exact value and Eq. (8) vanishes when

the coupling goes to zero. In Eq. (8), P plays the same
role as the term X/(1+X) in the isotropic situation and

taking P as the largest eigenvalue amounts to making T,
as large as possible by taking full advantage of the an-

isotropy of the superconductor. In order to give the ex-
pressions for co~,s and R in Eq. (8), we need only B(k)
and p to lowest order, that is the (normalized) eigenvec-
tor So(k) of Xo(k, k') with largest eigenvalue po, to first
order, p itself is given by (p —po)/pp =fdzk Xo(k)8o(k).
Then co) g is given by

1ntu~, s =(2/Po) So(k)8o(k')a F(k, k', co)into/co.

Finally, R, which is physically a measure of the intrinsic
width of the spectrum, is

R = I g(k, co~)g(k, co2)F(ln(coq/co~)),

where F(x) = —, (x cothx —1) and

g(k, cu) =(1/Po) d2k'(2/co)a F(k, k', co)BO(k')

is a k-dependent normalized spectral density. The dom-
inant term for lnT, is —1/Po. When considered for a se-
parable potential or a weakly anisotropic potential, this
dominant term leads to previous results in the litera-
ture. ' In the case of nonzero Coulomb pseudopotential
p*(k, k') and for this dominant term, po becomes the
largest (positive) eigenvalue of ko(k, k') —p*(k,k') and
80(k) is the corresponding eigenvector. The existence of
a positive eigenvalue has already been studied" for an
isotropic p*(k,k') to investigate the existence of the su-

perconducting state. In conclusion, we note that the
weak-coupling regime is the one where strong gap anisot-
ropy may be expected, since it may arise naturally in or-
der to optimize T„mostly when there is a sizable repul-
sive contribution in the interaction. Semiclassical the-
ories are likely to be in this regime. In particular, this
may lead to nodes in the gap and unconventional pairing.
Our weak-coupling result is of interest for all these
theories.

We consider finally a very natural interpolation which
allows us to bridge empirically between the weak- and
the strong-coupling regimes. Such an approach has been
quite successful for isotropic superconductors. First, the
fact that the k dependence of A„(k) corresponds to the
eigenvector of M(k, k') with largest eigenvalue applies in

both regimes. This is indeed what we have found in

weak coupling, and in strong coupling the largest eigen-
value of M(k, k') Xp(k, k')/Xo(k) is 1 for an isotropic
8(k), as easily seen. Then it is natural as an interpola-
tion to take for any coupling constant the k dependence
of the gap function as the eigenvector 8(k) of M(k, k')
with largest eigenvalue P. Moreover, we have found
that, in both extreme regimes, T, is controlled by a sin-

gle characteristic frequency. In the intermediate regime
we can interpolate as in the isotropic case between these
two frequencies, which leads to

8 (k)8(k') ln 1+
4 aT

a F(k, k', to ) 1+k

co 1+k

with a =3.9. We have set k =f d2k'8(k)b(k')Xo(k, k')
and )j, =jdqk6 (k)XO(k) [note that p=k/(I+X)]. The
left-hand side of Eq. (11) is the natural generalization of
the isotropic formula. The right-hand side takes into ac-
count that the eA'ective coupling strength for attraction
and renormalization are diA'erent. It leads to the correct
result on the weak-coupling side and goes to 1 in the
strong-coupling limit. Our formula is not completely sa-
tisfactory on the weak-coupling side, since it misses the
shape-dependent term R, as in the isotropic case. Never-
theless, from our experience with the isotropic case we
believe that our formula should give T, with a very
reasonable accuracy.
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