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Effect of Anisotropy on a Short-Range ~J Heisenberg Spin Glass in Three Dimensions
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A short-range + J Heisenberg spin glass with and without anisotropy on a simple cubic lattice is stud-
ied by using a hybrid Monte Carlo spin-dynamics method. The anisotropy leads to a cusplike peak of
the susceptibility g and a very slow relaxation of the spin configuration at low temperatures. From a
finite-size-scaling analysis of the spin-glass susceptibility g,g, we find, for the first time, that the anisotro-

py induces a phase transition.

PACS numbers: 75.10.Jm, 75.10.Nr, 75.40.Mg

The experimental evidence for a phase transition in

spin glasses is now convincing [1]. The computer simula-
tions [2-4] and other numerical studies [5,6] of Ising spin
glasses also strongly suggest that a phase transition takes
place in three-dimensional systems. However, similar
computer simulations of XY [7,8] and Heisenberg [8-10]
systems suggest that there is no phase transition in
three-dimensional systems, even when the spin interac-
tions are of long-range Ruderman-Kittel-Kasuya- Yoshida
(RKKY) character [11,12]. This is quite mysterious, be-
cause the best-studied spin glasses (e.g. , CuMn, AgMn,
Eu, Sr~ —,S) are Heisenberg-like systems. In an attempt
to resolve this problem, the eff'ect of anisotropy which
comes from Dzyaloshinsky-Moriya (DM) or dipolar cou-
pling which is always present has been discussed. Wal-
stedt and Walker [13] first investigated the effect of a
weak pseudodipolar coupling in a RKKY system using a
microcanonical Monte Carlo method and found that the
coupling leads to a cusplike peak of the susceptibility.
However, they did not discuss whether the peak reveals
the phase transition or not. Bray and Moore [14] specu-
lated that the anisotropy induces Ising critical behavior.
Using a scaling argument, Morris et al. [8] estimated
that, in the short-range spin glass, the transition tempera-
ture T, ee J(D/J) 't, where J is the average of absolute
values of isotropic couplings and D is that of anisotropic
couplings. Bray, Moore, and Young [15] argued that
the transition temperature of the RKKY system has a
much weaker dependence on the anisotropy of T, ~ J/
[ln(J/D)l ' . Hence, even if a very weak anisotropy ex-
ists, the phase transition is expected to occur at a finite
temperature. Detailed computer simulations of the
Heisenberg spin glass with the anisotropy are necessary
to examine whether the anisotropy really induces the
spin-glass phase transition or not, and, if it does, how the
transition temperature depends on the anisotropy.

In this Letter, we study the effect of the anisotropy in a
short-range Heisenberg spin glass on the simple cubic
lattice using a hybrid Monte Carlo spin-dynamics
(HMCSD) method proposed by us [16]. Since the
method takes into account the intrinsic spin dynamics of
the classical Heisenberg model, it simulates the system
more realistically than the conventional Monte Carlo

Since the essence of the anisotropy is in the tensorial
structure of the couplings, we assume for simplicity that
D,'~ are uniform random values between —D and D.

We brielly mention the method [16]. The spin dynam-
ics of the model is described by the following equation of
motion:

h S, =[S,xH, ],d
dt

(3)

where H; = —tJH/'t1S;. In this case, the energy and total
magnetization M=gS; are conserved. Then, we com-
bine a standard MC method (Metropolis method) to real-
ize a thermal equilibrium. The procedure of the simula-
tion is as follows. After spins of a given ratio are re-
freshed by the MC method (here half the spins are re-
freshed), all the spins are moved simultaneously by Eq.
(3) in the time interval to. These steps are repeated
throughout the simulation. Hereafter we measure the
time and temperature in the units of ttt/J= 1 and k8 = l.
When tp((1, the system is governed by the stochastic ki-
netics, whereas, when spins are not refreshed at all, the
system is governed by the spin dynamics. We make the
simulation with tp=0. 2, because this value is economical
to obtain physical quantities [16]. To avoid compounding
errors in the integration of Eq. (3), we use the Runge-
Kutta method with the time mesh of ht =0.1.

We treat the model on the simple cubic lattices of

(MC) method. Moreover, the method drastically reduces
computer CPU time. In particular, within a reasonable
computer time, we could clearly reveal the absence of the
phase transition in the isotropic short-range Heisenberg
spin glass.

We start with the classical Heisenberg model on the
simple cubic lattice described by the Hamiltonian

H =g J;JS;.Sl+ g D,'~S $~~
(ij &, a&p

where ~S; ~

= 1, J;t =J or —J with probabilities of —,', and

(ij ) runs over all nearest-neighbor pairs on a lattice.
Here we assume that the anisotropy comes from pseudo-
dipolar couplings and impose the following restriction:

(2)
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FIG. I. The spin-glass order parameter Q(M)'s for different
MCS's of M.

N =L x L x (L + I ) sites with a periodic boundary condi-
tion. We use a gradual-cooling method. After the first
2000 (or 4000) MC steps per spin (MCS) are discarded,
data of the next M MCS (M=4000 for L =5 and 7,
M=8000 for L=9 and 11, and M=16000 for L =15)
are used to calculate physical quantities. Numbers of
samples prepared in this simulation are 20-30 for L ~ 9,
10-20 for L =11, and 6 for L =15. We calculate the sus-
ceptibility g, spin-glass order parameter Q (M), and
spin-glass susceptibility g,g. The latter two are conven-
tionally defined by

2N
1

M

Q(M) =—g QS;(m)N; M m
(4)

and

(5)

where ( )J means the sample average. Using a tech-
nique similar to that of Bhatt and Young [2], we estimate
both the lower and upper bounds of g,g. Only when the
two bounds agree are results accepted for a scaling
analysis described below.

In Fig. 1, Q(M)'s for D/J =0.1 are presented for
diAerent values of M together with those for D=O. As
the temperature is decreased, Q(M) increases abruptly
below a temperature (T/J=0. 35). At low temperatures,
Q(M) reduces little as M increases revealing a very slow
relaxation characteristic to the spin-glass phase. These
properties are in striking contrast with those of the isotro-
pic case (D=O), where no spin-glass phase occurs at
finite temperatures [8-10,16]. These results indicate that
the anisotropy induces the spin-glass phase at low tem-
peratures.
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FIG. 2. Susceptibilities for diA'erent lattices. The results are
those for M=8000 (L =9, 11, and 15) and those for M =4000
(L =5 and 7). Solid lines indicate the Curie law of g=J/3T

where v is the exponent of the correlation length and g is
the exponent which describes the decay of the correlation
at T, . The scaling plots of the data of D/J =0.1 for lat-
tices of L ~ 7 are shown in Fig. 4 [18]. When T,/J
=0.30+oos, all the points for T/J~ 0.30 can be scaled
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In Fig. 2(a), the susceptibility g for the same anisotro-

py D/J=0. 1 is presented. It exhibits a cusplike peak at
the same temperature of T/ J=0.35 even for smaller lat-
tIces. Below this temperature, g exhibits a small M
dependence, revealing slow relaxation of the spin config-
uration. On the other hand, g for D =0 shown in Fig.
2(b) increases monotonically according to the Curie law
even for larger lattices. These also indicate the oc-
currence of the spin-glass phase for D&0.

In Fig. 3(a), g,s's for D/J =0.1 are plotted at difterent
temperatures as functions of the lattice size W. For
T/J~ 0.35, the results reveal a power-law decay of the
correlation, ((S; St)T)J, with increasing ~i

—j~, whereas
those at T/J=0. 3 and 0.25 suggest it has an algebraic
decay. We expect that the phase transition takes place
between T/J=0. 3 and 0.35. On the other hand, for
D=O, the results of the plots shown in Fig. 3(b) reveal
the power-law decay of the correlation at least down to
T/J=0. 20. For T/J &0.2, we could not obtain reliable
values of g,g for larger lattices, because the diAerence be-
tween the two bounds of g,g becomes significant.

To estimate the transition temperature T„we make a
finite-size scaling [17]. If the transition occurs, g,s will
behave as

(6)
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FIG. 3. g,g vs Ã on a log-log plot. The top and bottom of the
error bar indicate the upper and lower bounds of g,g estimated
by using a technique similar to Bhatt and Young [2]. Only
when the two bounds agree are data accepted for the scaling
analysis in Fig. 4. Note that the slope of the line at T/J=0. 30
is (2 —rt)/3 —0.5, leading to q —0.5.

well. Values of the exponents determined in this analysis
are g=0.7 —+o4 and v=1.15%-0.10. T, obtained here is
in agreement with that suggested from the temperature
dependences of Q(M) and g, and the value of t1-0.7 is
also compatible with tl —0.5 estimated from the slope of
the plots in Fig. 3(a). On the other hand, for D/ J=0, all
the points can be scaled well if we choose T,/J (0.1.
When we take T, =0, which is predicted by previous
studies [8-10], and confirmed by the present studies of
Q(M) and g, we obtain tl = —(0.9-1.0) and v=1.35
~0.05. Our value of v —1.35 is compatible with those
estimated previously, i.e., v=1.54%-0.19 by McMillan
[9] and v —1.4 by Olive, Young, and Sherrington [10].
This also proves the validity of the HMCSD method.

Quite similar results are obtained in another case of
D/J=0. 05. From the finite-size scaling, we get T,/J
=0.25 —+o

~ o and similar values of the exponents g
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FIG. 4. A finite-size scaling for L~7. The solid line is a
guide to the eye.

=0.6+g ~ and v=1.20+ 0.10.
From these results, we may conclude that the anisotro-

py induces the phase transition at a finite temperature.
In this sense, the Heisenberg spin glass with anisotropy
resembles the Ising spin glass. However, the spin struc-
ture of the Heisenberg spin glass is quite diA'erent from
that of the Ising spin glass. We have also calculated the
distribution of the spin directions and found that, even for
T & T„ the distribution is almost uniform in the three-
dimensional space. The critical exponent v —1.2 is al-
most the same as those predicted in the Ising spin glass,
i.e., v=1.4 by Bhatt and Young [2], and v=1.2 by
Ogielski [3]. However, the exponent g-0.6 in our model
is much larger than q

= —(0.3-0.2) predicted in the Is-
ing spin glass [2,3,5,6]. This will be due to the difference
in the spin structure between the two spin glasses. In
fact, the spin correlation will decay more rapidly in the
Heisenberg model than in the Ising model because of
the uniform distribution of the spin directions. The dif-
ference of g together with the diff'erent spin structure
strongly suggests that the Heisenberg spin glass with the
random anisotropy belongs to another universality class.

The other point to be studied is how T, depends on D.
At present, it is difficult to give a conclusive answer to
this question because we estimate T, only for two values

of D. We should mention, however, that our results sug-

gest a weak dependence of T, on D. Here, we examine
the prediction of T,/J ~ (D/J) with x ——, which is

given by Morris et al. [8] based on a scaling argument.
A plausible fit is shown in Fig. 5, where x = —,

' is used.
Our result is not incompatible with the theoretical predic-
tion. Of course, our values of T, are not accurate enough
and we cannot exclude the possibility of another value of
X. Further computer simulations are necessary to give
the dependence of T, on D.

In this Letter, we have studied the short-range ~ J
Heisenberg spin glass with anisotropy using the HMCSD
method, and found for the first time that the anisotropy
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FIG. 5. Dependence of the transition temperature T, on D.

[I] For recent reviews, see K. H. Fisher, Phys. Status Solidi

induces the phase transition at a finite temperature. We
believe that this answers the primary question of why the
spin-glass phase occurs in the real world, although our
model is a simplified one and the magnitude of the aniso-

tropy used here is much stronger than those of real sub-
stances. Similar studies for realistic systems such as the
RKKY system with the dipolar interaction are also
desired to obtain more detailed knowledge of real spin
glasses. Finally, we should emphasize that all the things
presented in this Letter were obtained by the HMCSD
method within Monte Carlo steps much smaller than
those of the conventional MC method.
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