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Excited States in He Described by a Shadow Wave Function
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The idea of the shadow wave function, which incorporates quantum delocalization of particles in the

description of quantum liquids and solids, is applied to excited states of liquid He. With a simple Feyn-
man shadow wave function we compute the phonon-roton excitation spectrum by a Monte Carlo method
at three diAerent densities. The variation of the excitation energy with density is consistent with the be-
havior of the experimental data. The energy near the roton minimum is in excellent agreement with ex-
periment at all densities.

PACS numbers: 67.40.Db, 02.50.+s

If the ground-state properties of liquid He can be con-
sidered as reasonably well understood, our understanding
of the excited states of the system, in particular, roton
and vortex excitations, is incomplete and uncertain. Con-
sider how little quantitative progress has been achieved in
the computation of the roton energy since the pioneering
work of Feynman and Cohen [1] (FC). A recent ela-
borate computation [2] in which the wave function of a
roton includes contributions up to fourth order in density
fluctuations pt, =g, e ' (FC is second order) gave an

energy which is about 15% higher [3] than the experi-
mental value. It showed even larger deviations in the
strength Z(k) of the single-excitation peak of the dynam-
ical structure factor S(k, co). The systematic study of the
excitation spectrum from perturbation theory based on
correlated basis functions has given [4] useful insight into
the problem but a computation of this sort taken to high
order requires approximations for correlation functions
beyond the pair level with a resulting uncertainty on the
results.

In this Letter we introduce a new form for the wave
function of these excited states based on the use of subsi-
diary variables. Such a shadow wave function, which we
will shortly define, was first introduced [5] to describe the
ground state %0 of He. It made a number of important
contributions, for instance to our understanding of
solidification. Here we show how to generalize this form
for excited states. Within the new framework provided
by the shadow wave function we use the basic idea of
constructing an excited state by modulating the coordi-
nates of the shadow particles. This is conceptually a very
simple approach and in its simplest form leads to a func-
tion for an excited state with no new variational parame-
ters. We find that the trial function, with momentum 6k,
gives a very good value for the energy at the roton
minimum. It also gives an equally good description of the
density dependence of the energy of a roton. We believe
that these very good results clearly demonstrate that the

shadow wave function provides a powerful, and practical,
new approach for the description of boson systems.

The shadow wave function for the ground state [5]
couples the positions [r;] of He atoms by a Bijl-Jastrow
product times a factor that couples the particles by
Gaussians to subsidiary variable [s;]. These variables are
in turn correlated by a pair product factor. Since the [s;]
are integrated out, there are many-body couplings among
the [r;] beyond the pair level.

A physical motivation for this choice of +0 comes from
Feynman's path-integral formulation of the density ma-
trix over discrete imaginary time [6]. As is well known,
to each particle position r; we can associate, in this for-
malism, a sequence of positions r;" . In this context we
can think of particles as being represented by a kind of
"polymer" where the r;" are the monomer coordinates.
For the purpose of the present discussion, cross-linking of
the polymers related to Bose statistics is not important
because the hard-core interaction prevents frequent
cross-linking. Both particles and associated monomers
interact with each other, so correlations between particles
occur both directly and indirectly via the polymers. This
last mechanism induces correlations beyond the two-body
level. In other words, due to the quantum uncertainty,
the particles are delocalized and high-order correlations
arise. As the intrapolymer interaction in the path in-
tegral is harmonic, it is reasonable to expect that the
monomers have a Gaussian-like distribution about the
center of mass of its polymer. From this picture the sha-
dow wave function emerges. The subsidiary variables
have the role of the centers of mass of the polymers, and
the interpolymer correlations are represented by an
efIective interaction between these centers of mass, i.e.,
between the subsidiary (shadow) variables.

In an excited state, particles undergo additional motion
but the delocalization of the particles, producing what we
call quantum holes, should appear not only in the ground
state but also in these excited states. This hole should be
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essentially unaltered for excitations of low energy. Guid-
ed by this idea we have constructed our trial functions for
excited states. For a state with momentum Ak we write
the unnormalized function in the form

W (R) =y, (R) „dS+8(r;—s;)y, (S)ag,
I

where
JV

hark= Z e

R=—[r(,r, , . . . , r ], S=—[s, , s~, . . . , s~],

p„(R) =+exp [——,
' (6 / I r; —r

I )"],

and

8(rt —si, ) =exp[ —C(rt —si, )'],

1V

(~) ~ Ik sj + l'Qk' (sj rj )=Z
j= [

(3)

where a is a variational parameter. Since ok ' =pk, the
trial function 0k ' is just the standard Feynman form
when the ground state is the shadow function. The quan-

tity a+1 is a measure of the amount of backflow.

W, (S) = II exp[ —(~,/ls; —s, I)'] .
i&j

Except for ak, all terms in Eq. (1) are identical to those
in the trial wave function for the ground state [5]. The
values of the variational parameters b, n, C, and b, are
those that best describe the ground state.

The trial function +I, has essentially a Feynman form
[7] but the density fluctuation appears in the subsidiary
variables via o.k. That this +k should be superior to the
standard Feynman form is inferred from the fact that it
already includes backflow eAects. In fact, by expanding
the integrand in (1) with respect to r; s; to lowest order
in the width of the Gaussian 0, one finds exactly the FC
form [1] with a dipolar backflow function. Its spatial
dependence is not the hydrodynamic r form, however,
but is determined by the form of y, (S). On the other
hand, for a finite width of 0 the expansion leads to terms
of all order in powers of pk. Therefore our +k has a non-

polynomial structure in pk. An additional insight on our
wave function is obtained if the expansion mentioned
above is transformed in a cumulant expansion of the

ik. (s- —r;)
average of e ' ' with respect to the shadow variables.
In this case the term of lowest order has the FC form in

the exponential form. Therefore in our computation we

are able to handle implicitly for the first time the
backflow in the exponential form and this can be impor-
tant for excitations in the maxon and roton regions where
the short-range structure is important as well.

It is significant to note that the trial function of Eq. (1)
has no free parameters and the amount of backflow is

determined by the ground-state correlations. One can,
however, easily generalize that function so that it con-
tains a variable amount of backflow. This new function

is the same as Eq. (1) but ot, is replaced by

where the first term is the total energy of the excited state
and the second term is the ground-state energy. H is the
Hamiltonian, O'T is the ground state, i.e., Eq. (1) without
the factor ak, and the averages (denoted by the angular
brackets) are taken with respect to the normalized func-
tion

=-(R,S)=-(R,S')
fdR ds ds':-(R, S):"(R,S')

Here =(R,S) = y, (R) Q; 0(r; —s;)y, (S), and tTkt' in

Eq. (4) stands for Eq. (3) with s in place of s;. The 9N
dimensional integrals in Eq. (4) are evaluated by the
Metropolis Monte Carlo algorithm.

In our computation we have used the interatomic pair
potential of Aziz et al. [8], the ground-state factors y„, 0,
and y, are the ones determined in Ref. [5], and the exci-
tation energy is computed for moments corresponding to
the Born-von Karman wave vectors consistent with the
periodicity of the simulation cell (108 particles in the
present computation).

In Fig. 1 we show the excitation energy as a function of
a for a single value of the wave vector, at k =1.843 A
the value nearest to the roton minimum. At o. = —

1 the
energy is of order of 20 K, a typical value of the roton en-

ergy given by the standard Feynman wave function. It is
clear that there is a dramatic decrease of the energy with
increasing value of a and that somewhere near a =0 there
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FIG. 1. Excitation energy of liquid He at equilibrium densi-

ty as a function of a for k =1.843 A ' for runs of l50000 at-
tempted moves per particle and per shadow. The bars represent
the statistical fluctuation. Inset: The results of runs 10 times
longer. The horizontal lines represent, respectively, the experi-
mental value (short-dash-long-dashed), the Bijl-Feynman value
[2] (long-dashed), the FC value [2] (short-dashed), and the
second-order perturbation result [2] with FC states (dot-
dashed).
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We have computed the excitation energy si, corre-
sponding to +k' from the expression

(a' 'g crk' (H%'T)/er) HOT
()) qr
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TABLE I. Excitation energy near the roton minimum at the
densities displayed in the first column. The second column
shows the value of the wave vector which in our computation is

closest to the roton minimum. In the last two columns we
present our results and estimates of the experimental energies
for the indicated k values. At the highest density, the experi-
mental result is at p=0.0256 A

10 p(A ')

0.0219
0.0240
0.0262

k(A i)

1.843
1.901
1.960

9.77+ 0.52
8.51 ~ 0.59
7.97 ~ 0.55

si, (K)
(Expt. ) '

8.90
8.04
7.74

k ( t/A )
FIG. 2. Excitation energy spectrum as function of the wave

vector when a=0. The solid line is a least-squares spline fit to
neutron-scattering data [13]obtained at the equilibrium density
po. The circles are our results at this last density. The squares
stand for our data at p= 1.lpo. The crosses show our results at
a density p =1.2po close to freezing.

is a minimum with an energy of order of 9.5 K. The
minimum is not well determined, however, even for the
longer runs we have made (corresponding to the data in

the inset in Fig. 1). In fact, this computation is very
demanding because we are interested in an energy
difference and because we have to deal with very fast os-
cillating phases when evaluating the energy of the excited
states. Typically our runs take more than 40 h on the
IBM 3090. In any case we are able to conclude on the
basis of the present computation that the shadow Feyn-
man form gives an energy much better than the FC value
(around 14 K) and even lower than a second-order per-
turbation computation with FC states which gives [2,3]
10.3 K. The fact that a is close to zero at the minimum
of the excitation energy verifies our hypothesis that the
quantum hole for low-energy excitations is essentially un-

changed with respect to the ground state.
The excitation energy for the other values of k has a

similar trend as function of a but since the minimum with
respect to a is ill determined, we show in Fig. 2 the re-
sults for a =0, i.e., for the wave function given by (1) and
(2). The shape of the spectrum as a function of k is given
correctly but the deviation from experiment in the maxon
region is substantially larger than in the roton region. It
is known [2], however, that the maxon energy is very
dependent on the form used for the ground state. So, the
maxon energy we get could be aA'ected by the specific
choice [5] of the ground-state shadow function and a
careful optimization of the correlating factors contained
in +T is required for a full assessment of our results for
the maxon energy.

Experimentally, the excitation spectrum has an impor-
tant density dependence, the maxon energy going up with
density, whereas the roton energy goes down and the ro-
ton minimum is displaced to a larger k value. We have
performed the computation of sp at higher densities up to
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freezing and the results for a =0 are also shown in Fig. 2.
It is clear that the trend of ep with density is exactly the
experimental one and in Table I we present the excitation
energies and their errors for the momentum value nearest
to the roton minimum. Also in this table we quote esti-
mates of the experimental values [9,10] at the given mo-
menta. There is a remarkable agreement, particularly
when we keep in mind that the wave function (1) has no
variational parameter. From our computation there is a
clear indication that the position of the roton minimum
moves to a larger wave vector as we increase the density.
The drawback of a computational simulation like ours is
that we can only compute e& for a finite set of wave vec-
tors. The size of the system in the present calculation is
too small to allow an estimate of the location of the roton
minimum and of the effective mass. In this respect the
development of analytically based treatment of the
present wave function would be very useful.

The strength Z ')(k) of the single-excitation peak of
the dynamical factor S(k, a)) computed using the shadow
wave function is obtained through the equation

i( —() (a)) 2

Z('(k) = (6)
( i(a) (a))

In Fig. 3 we show our results for Z (' (k) at the equilibri-
um density together with its experimental value [11].
When a= —1 we have Z ' (k) =S(k), the ground-
state structure factor given by the shadow wave function.
The value of Z (k) is substantially lower than the com-
puted value of S(k) and is in much better agreement
with experimental values. This gives further support to
our wave function because it produces a reasonable
description of the amount of the single-excitation contri-
bution to S(k, n)) compared to the multiple-excitation
contribution. In the roton region we still overestimate the
experimental Z(k) by about 50% and our results are
roughly comparable to those given by the second-order
perturbation calculation based on FC states [2], but a de-
tailed comparison cannot be done for the reason already
mentioned in Ref. [3]. It should be noticed that Z(k) is
directly related to the correlation functions of our wave
function +T of the ground state. Again a full assessment
of the result for Z(k) needs a careful optimization of the
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FIG. 3. Single-excitation peak intensity Z(k) as a function
of the wave vector. The solid line gives the result for e= —1,
that is S(k) when the ground state is described by +r. The cir-
cles are our results for a=0. Where not visible, the statistical
error of our result is below the symbol size. The solid circles
show the experimental data [11].
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correlating factors present in WT.
In conclusion, we have shown that shadow wave func-

tions are important not only for ground-state properties
but also for excited states. With no variational parame-
ters in a Feynman shadow function, we obtain the best
theoretical estimate so far of the roton energy, having a
deviation from experiment in the range of 0.5-0.8 K at
all densities. The fact that we predict the correct density
dependence of @ is particularly significant. An improved
form of the shadow wave function for the ground state
should improve the result for the excitation energy ep.
We see two important aspects by which the present wave

functions diAer from the traditional ones. We guarantee
that the quantum hole present in the ground state is

present also in the excited states. Thus many-body corre-
lations are induced between particles, and the wave func-
tion does not have a polynomial structure in the density
Auctuation variables pg of the particles. It is also clear
that our wave function can be expanded in powers of px
and, presumably, at small k only few low-order terms will

be relevant. Whether this is also the case in the roton re-

gion or whether the excellent result we get for the roton

energy is due to the fact that implicit in our computation
is a backAow structure in an exponential form is an im-

portant issue, and the clarification of this point can also

give useful insight on the perturbative approach. We be-
lieve that aspects related to the quantum hole will be
relevant to other properties of Bose Auids and also in the
cases of quantum solids and of fermion systems, at least
those with a hard core. As a further application of this
idea, we have shown [12] that it is possible to write down

a shadow wave function for a vortex excitation which has
distributed vorticity and either a hollow or a filled core.
A variational computation with this wave function is in
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