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Long Waves in Parallel Flow in Hele-Shaw Cells
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The evolution of fluid interfaces in parallel flow in Hele-Shaw cells is studied theoretically and experi-
mentally in the limit of large capillary number. It is shown that such interfaces support wave motion,
the amplitude of which for long waves is governed by a set of Korteweg-de Vries and Airy equations.
Experiments conducted in a long Hele-Shaw cell validate the theory in the symmetric case.

PACS numbers: 47. 15.Hg, 47.55.Mh

The flow of two immiscible fluids in a Hele-Shaw cell
has been a subject of great interest. The majority of
studies have focused on frontal displacement, particularly
on viscous fingering [1-3] (VF). This is readily under-
stood in view of the interesting problems in the high-A', „.
limit [4], the relation of VF to Laplacian growth [5], and
the implications to oil recovery [6]. In contrast, little at-
tention has been paid to the dynamics of interfaces paral-
lel to the main flow direction. Although lacking the rich-
ness of frontal motion, parallel Aow is nonetheless in-

teresting. Parallel flow is the theoretical limit of fully
developed fingers (e.g. , the Saffman-Taylor finger). Even
in the absence of capillarity, this regime is of great in-

terest, especially for finite viscosity ratio [7]. In porous
media, parallel Aow develops in thin reservoirs, under the
conditions of vertical flow equilibrium [8]. Finally, inter-
faces parallel to the main Aow may support motion simi-
lar to shallow water waves, the Laplace equation being
the field equation in both cases. The latter possibility has
obvious interests of its own and forms the subject of this
paper.

We study the interfaces between two immiscible and
incompressible Auids of diA'erent viscosities in the parallel
Aow schematic of Fig. 1. The Hele-Shaw cell is horizon-
tal and has half width 8'. For the fluids to Aow in paral-
lel requires Aat interfaces; thus the absence of transverse
pressure gradients. This further necessitates that the two
velocities are related, pbqb =p, q, —=Q, where subscript a
denotes the "inner" Auid. Under this condition, steady-
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It is noted that in the above, capillarity first enters at
O(k ). For long waves (small k) and for a sufficiently

large value of the modified [2] capillary number, lv,'„.

=q, p, L /) b, capillarity can be neglected (but see also
Ref. [9]). Here, b denotes the cell spacing. Then, the
rate of growth is strictly real and the wave speed c —=to/k
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state interfaces are Aat. We denote their normalized po-
sitions by Xl and X2 ( —1 ~ 12(kl ( 1), where trans-
verse lengths are scaled with the half width 8' and define

the viscosity ratio in the usual manner, M= pb/p, .—
significant interest below is the symmetric case (kl
= —Xq). We may note that the Saflman-Taylor finger

corresponds to X] = —k2 = —.', M =~.
To study interface dynamics, we first derive the linear

dispersion relation using normal modes (e' ' ' ), where

we scale time by I./q, and streamwise lengths by I A.
compact result is obtained in the symmetric case (k~
= —X2 and g= —0, where g and 0 are scaled ampli-

tudes),
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where co=1/(I —X|+X|M). For M&1, the above pre-
dicts dispersive waves [10], i.e. , waves with different
wavelength have diAerent speed. Nondispersive waves
are predicted for M = 1 (any kl) and for X

~

= —, (any M).
For the specific Saflman-Taylor finger, however, they
have an infinitesimal velocity (M)) 1).

A similar analysis for the nonsymmetric case (k
~

& —
A. 2) leads to a complicated expression, which has the

following simple asymptotic behavior. Two solutions
(corresponding to two interface modes) exist,

FIG. 1. Flow geometry for (a) nonsymmetric and (b) sym-

metric cases. to~i =k (xo i~i+ x2 i„k'+ . ), m =1,2, (3)
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where xp i
=+ 1/M, xp 2 =+ 2/A,

x. ,
= (M —I ) (X, —I ) (X,+ I ) (X, —X,)/M'(2+X, —X, ),

xp 2=4(M —1)(kl —X2)(1+Xp ki)[(X2+1) +(ki —I) +(X2+1)(ki —I)]/3& (2+k2 kl),

where subscripts 1 and 2 denote the "upper" and "lower"
regions of IIuid b, respectively [Fig. 1(a)]. Across each
interface, pressure and normal fluxes are continuous. For
the upper interface, we obtain pl =p, and

=a'M(y. , —I )~„—My. ,„
t = I,

&'lt11 —ri, (y,„—I )] = —y„,.
Similar equations with q replaced by 0 hold for the lower
interface. Then the following asymptotic expansions are
taken, p;=up;p+e6 p;, 1+@6 P; q+ .

, for i =a, 1,2,
g=egp+t. q]+ and O=eOp+e L9]+, and two-
timing (t, t =et) is introduced. By eliminating secular
terms at first order and after lengthy calculations, the fol-
lowing set of Korteweg-de Vries and Airy equations is
obtained:
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I

(M —I)
Mh,

a]p LeL 0 (7)

(2+X —k )UU

=0. (8)

Here, V and U are linearly related to the leading terms of
the interface amplitude tip and Hp [Fig. 1(a)]:

V = [( I +X ) tIo+ (1 X
1 )Hp]/(2 —X i +kp),

U—:(tip —Hp)/(2 —X
1
+X2) .

Variable U denotes the net transverse displacement of
Iluid a. The parameters in (7) and (8) are consistent
with (3) since a„,=Mhx2 „,/(M —I ), m =1,2, and
=xJe. The two equations have been decoupled using
two diA'erent moving coordinates, g—:x —t/M and
a=x 2t/A-

From (7) and (8) we note the following: (i) Transla-
tional motion occurs for M= 1; (ii) there are two long-
wave speeds, 1/M and 2/6, both decreasing to zero at
large M; (iii) the dispersive term in the KdV equation
vanishes for I +k2 —ki =0 (which, in the symmetric case,

1coincides with the Saltman-Taylor condition, Xi = —, );

and where d, —=2+(M —1)(ki X2). As in (2), dispersive
waves are predicted for M ~1.

Subsequently, we consider the nonlinear evolution of
small-amplitude (e), long-wave (6) disturbances. We
take e=O(6 ), 8=W/L, and e and 6((1. We outline
the key steps of the approach that closely follows Ref.
[11]. In each region, the Laplace equation is satisfied [2]

6 p;„-+p;„=0,i =a, 1,2,

(iv) antisymmetric disturbances (tI=H) are governed by
the linear Airy equation alone; (v) the symmetric prob-
lem (A, l

= —kz and t1= —H) is governed by the KdV
equation alone. The latter also pertains to the experi-
ments below [Fig. 1(b)]. In that case, we recast for sim-
plicity (8) in terms of the original variables t1, x, t, and
Cp,

t1, +cptI, -
—2(M —1)cp rtrt,

+e(c /3)x'(M —I)k(I —21)(I —X)g„,„=0. (9)

Equation (9) can be interpreted as follows: Because of
parallel flow, an initial disturbance travels with a long-
wave speed cp. The latter always lies between the veloci-
ties of the two IIuids (e.g. , I & cp ( I/M for M & I). For
an observer traveling with speed cp the fluid flow is coun-
tercurrent, the lower-viscosity fluid flowing towards the
right and the higher-viscosity one towards the left in the
schematic of Fig. 1(b). It must be recalled that in the
Hele-Shaw context, viscous shear is not relevant to long
waves. Because of unequal viscosities, the long-wave dis-
turbances also disperse, to the left if (M —1)(1—2X)
&0, and to the right, otherwise. We note that shorter-

wavelength dispersion, although possible, is likely to be
damped by capillarity and wettability effects. Sustained
wave propagation is possible if amplitudes are small and
the nonlinearity is weak. Strong nonlinear efTects must
be excluded. They violate parallel-flow conditions and
are likely to lead to frontal motion and viscous fingering.
Nonetheless, weakly nonlinear waves also tend to break,
to the left if (M —1)tI)0, and to the right, otherwise.
For the positive disturbance of Fig. 1(b), dispersion will
oppose breaking if 1

—2X (0. Under this condition, a
permanent form wave would develop that propagates to
the left or to the right, depending on whether M & 1 or
M & 1, respectively. Analogous conclusions can be drawn
for all other possibilities.

To test the theory, a long and narrow Hele-Shaw cell
was constructed consisting of two Plexiglass plates 0.5 in.
thick, of dimensions 220 cm x 27 cm, separated by a
rubber spacer 0.08 cm thick and 10 cm wide. The setup
consists of the cell, two peristaltic pumps, and video
equipment. Although other fluid pairs were also used, the
experiments reported here were conducted with mineral
oil and glycerol-water solution, with viscosities 170 and
860 cP, respectively, and with values of the modified
capillary number of order 10 . For substantially lower
values of N,'„,sustained propagation was not observed,
thus confirming the importance of capillarity at low N,'„..
The experiments involved only one interface [Fig. 1(b)l,
pertaining to the symmetric case. Because (7) and (8)
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the wave motion of the interface of immiscible fluids in

viscous-dominated parallel flow in a long Hele-Shaw cell.
Small-amplitude, long-wavelength disturbances were
shown to be governed by KdV and Airy equations. For
the symmetric problem, experimental evidence was sup-
portive of the theory, including the propagation of soli-
tary waves.
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FIG. 5. Numerical simulation of Fig. 4. Inset: Profile in

diAerent scales.

tons reappear, but in reverse order, and they propagate
with their original speed [Fig. 4(b)]. The corresponding
numerical simulations are shown in Fig. 5.

A variety of other conditions (not shown because of
space limitation) were also investigated and found con-
sistent with the theory. Two solitary waves of diAerent
amplitudes resulted from a longer-wavelength initial dis-
turbance, as expected. Comparison with the numerical
simulations was also satisfactory in this case. Short-wave
disturbances dissipated shortly after their onset, as also
predicted. For solitons that propagate in the negative cr

direction () ( —, ), dispersive waves should proceed them
in a fixed frame of reference. Such were noticed, al-
though the above remarks on wettability eAects apply
here as well. We must point out that because of wettabil-
ity eAects, all our experiments were limited to distur-
bances in the direction of drainage (nonwetting displac-
ing wetting). For M = I, constant wave speed and motion
independent of the amplitude are expected. These
features were indeed observed for nearly equal-viscosity
Auids. Furthermore, for M —1, large-amplitude waves
did not break, in contrast to every other case studied.

In summary, in this paper we presented an analysis of
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