
VOLUME 67, NUMBER 11 PHYSICAL REVIEW LETTERS 9 SEPTEMBER 1991

Generalized Relativistic Variational Calculations for Hydrogenic Atoms in
Arbitrary Magnetic Fields

S. P. Goldman and Zonghua Chen
Department of Physics, The University of Western Ontario, London, Ontario, Canada N6A 3K7

(Received 4 June 1991)

A relativistic basis set composed of products of Slater- and Landau-type functions is introduced and

applied to the accurate calculation of the ground-state energy of an electron in a static Coulomb field

and a magnetic field of arbitrary strength. The relativistic corrections for strong magnetic fields diA'er

from previous relativistic adiabatic approximations. It is found that the sign of the relativistic correction
changes from negative to positive; for hydrogen this occurs near B =10'' G. The accuracy of the
nonrelativistic-limit results matches or exceeds that of previous nonrelativistic calculations.

PACS numbers: 32.60.+i, 31.10.+z, 31.30.Jv

Hydrogenic atoms in strong magnetic fields have been
studied extensively in nonrelativistic quantum mechanics
[1-8] because of considerable interest in astrophysics [9],
in solid-state physics [10], and in chaotic studies [11].
Very accurate nonrelativistic numerical results have been
obtained recently [3-8] (with a precision better than
10 a.u. for the binding energy of hydrogen for 8 ~ 10''
G). It is therefore necessary to include relativistic correc-
tions [of the order of (aZ) =10 a.u. for Z= 1] in

such highly accurate calculations. Few relativistic studies
of the problem have been performed [12-14], and
diff'erent approximations have yielded quite diAerent re-
sults. The relativistic corrections given by adiabatic ap-
proximations [14], for example, are much smaller than
those given by a first-order approximation of the Foldy-
Wouthuysen transformation to the Dirac equation [12].
Recently, a relativistic finite-basis-set method has been
used to calculate the binding energies of hydrogenic
atoms to a precision of 10 a.u. for 8510' G [15].
The results are different, both in sign and in magnitude,
from previous calculations using adiabatic approxima-
tions [14]. For 8 ~ 10' G, however, the method [15]
based on the coupling of Slater-type basis functions with
difI'erent angular momenta fails to converge to a high
enough accuracy to calculate the relativistic corrections.
In this paper we generalize the basis set to incorporate
Slater- and Landau-type functions so that it contains the
exact solutions to the Dirac equation at both 8 =0 and
Z =0 limits. This enables us to calculate both relativistic
and nonrelativistic binding energies with higher accuracy

for arbitrary magnetic fields.
The Dirac Hamiltonian for an electron around a fixed

nucleus with charge Ze and in a constant magnetic field
Bis

e Ze 2

H =ca p+ —A +Pmc
C r

where a and p are the standard Dirac matrices. The vec-
tor potential A can take the form

A= —,
' Bxr,

where B=Bz. The Hamiltonian commutes with the z
component of the total angular momentum and with the
parity operator, so that the corresponding quantum num-
bers p and z are conserved. In the following discussion
atomic units m =h. =e=1 will be used. The magnetic
field will be given, by convention [2], in units of
(e/6 ) m c = 2.35 x 10 G. In these units, 8 = I corre-
sponds to Aco, /(e /ao) =1, where a() is the Bohr radius
and co, =eB/mc is the cyclotron frequency of the elec-
tron. When 8 ~ 1, the transverse energy ()ttco, ) is bigger
than 1 a.u. , and in this case, the magnetic field will be
called intense.

For intense magnetic fields, the excitation energies of
the Landau levels are bigger than those of the Coulomb
potential, so that the major contributions to the ground-
state energy are the ground state of the Landau levels
and many low-lying Coulomb states. Thus, we propose to
obtain the variational solutions to the Hamiltonian in Eq.
(1) with a basis set of the form

@(k) y
—

I n —xr —P(rsin()) (c g) 4( .
g) IP Al t 0 &a t' 0 (2)

where gA are the four-component spin functions with spin
projection st. . For the ground state (with tt = I,
p = —

2 ), the powers lq for the angular dependence are
given by

l l
= 1,3, . . . , 2Ng —1, l2 =0,2, . . . , 2Ng,

l3=0, 2, . . . , 2Ng, l4=1, 3, . . . , 2Ng+1.

Note that when Ng=0, there will be no vectors corre-

sponding to k =I; the total number of vectors will be
M=(4N()+3)(N, + I). These choices are based on the
consideration that the basis set should contain the exact
solutions at both the Landau and Coulomb limits. For
example, when 8=0, the spherical harmonics and the
Clebsch-Gordon coefficients are produced automatically

by the diagonalization procedure. The parameter y is

determined by the boundary condition as r 0 to be
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[1 —(az) ] ' for the ground state; and X and p are non-
linear variational parameters.

The variational procedure is similar to that for the pure
Coulomb and the Dirac-Hartree-Fock potentials [16].
The basis set is first orthonormalized by the diagonaliza-
tion of the overlap matrix (@„I"„~@„"I), which yields M
orthonormal basis vectors of the form

(k) g b (k)@(k)
nil,

(3)

The variational solutions to the Hamiltonian in Eq. (1)
are then obtained with trial functions of the form

@i g (k) (k)

jk
(4)

Since we are looking for stationary states, we diagonalize
the Hamiltonian in the orthonormal basis vectors to
determine the linear variational parameters a;~ for cer-
tain values of N„, N(), k, and P. This procedure yields
N++ N =M varia—tional eigenvalues and eigenstates,
where N+ and N are the nu-mber of basis vectors for
positive-energy and negative-energy states, respectively.
If the basis set is complete, then in the vicinity of the true
energy, the change of the variational eigenvalue E(l, ,P)
with the nonlinear parameters A, and P should decrease as
the size of the basis set increases. Thus a smoother range
of E(k, )g) against k and P should be achieved as the
powers N„and N() are increased. We therefore determine
the optimal value of the energy by searching for the most
stable range of the ground-state energy E(k,P) against X,

and P for certain values of N, and Ng. The results ob-
tained in this way have converged to more than seven-
significant-digit accuracy for 0 & 8 ~ 5000 (0 & 8 ~ 10'3
6) with less than 200 basis vectors. Note, however, that
there is no upper bound on the energy globally: The con-
vergence can be achieved from both sides of the true en-

ergy. We have confirmed that our basis set is approach-
ing completeness as the size of the basis set is increased
by means of sum rules [17] and the virial theorem
[15,18]. The detailed discussions of the results will be
presented in another paper.

A comparison with previous results for hydrogenic
atoms is made in Table I. Our relativistic results diff'er

from the previous relativistic calculations which were per-
formed using adiabatic approximations [14]. In the non-

relativistic limit, however, unlike the adiabatic calcula-
tions, our results agree with the most accurate nonrela-
tivistic calculations available. Moreover, for 8 ~ 20, our
results converge to more significant digits than previous
nonrelativistic calculations. Note that, as shown in Table
I, the previous nonrelativistic calculations do not agree to
the quoted precision for 8 ~ 200.

The nonrelativistic limit for strong 8 is obtained by
taking a 0 in the Dirac Hamiltonian but keeping aB
fixed. In the framework of the Schrodinger equation, the
nonrelativistic binding energies with Z&1 can be calcu-

lated by a simple scaling relation [19] for the energy

E(z,B)=z'z(I, B/z') . (5)

In the case of the Dirac equation, however, there is no
such scaling relation and it is then necessary to perform
separate calculations for diAerent values of Z.

The dependence of the relativistic corrections on 8 for
the ground state of hydrogen is plotted in Fig. 1. It shows
that the relativistic correction changes sign near 8=40
(= 10'' 6); thus the absolute value of the correction is
decreasing with 8 for 8 40 and is increasing with 8
when 8 ~40.

The variational results are also checked by comparing
with the relativistic perturbation results (relativistic gen-
eral Paschen-Back effect) of hydrogen for low and inter-
mediate magnetic field 8. Using these perturbation
methods, the relative relativistic correction can be written
as [20,21]

&nr 1
( )p Z /4 —8/3

Z'/2+8/2 '

where E and E„, are the relativistic and nonrelativistic
ground-state energy, respectively. Figure 1 shows that
our variational results agree very well with the perturba-
tion results for the range of 8 where the perturbation
method is valid. Note that although the perturbation re-
sults for E and E„„are accurate to 10 a.u. only for
8~10, their difference yields correct results up to
8 +10

%e have also confirmed our previous relativistic results
[15] which were obtained by Slater-type basis functions
for 8 &20. The present method, however, yields higher
precision with fewer basis vectors for the full range of
values of B. The method provides both accurate nonrela-
tivistic and relativistic results, with an accuracy of more
than eight significant digits for magnetic fields in the
range 0~ 8 ~ 500 (0 (8 10' 6) for Z =1, and

higher accuracy for larger Z.
Our calculations indicate the necessity to include rela-

tivistic corrections given the current numerical accuracy
of the nonrelativistic calculations. The adiabatic approxi-
mations used in Ref. [14] are not accurate enough to get
relativistic corrections for 0(8 2000 for hydrogenic
atoms, given that the error introduced by the adiabatic
approximations can be bigger or of the same order as the
relativistic corrections.

In conclusion, we have provided a very e%cient and
precise technique to calculate the binding energies of a
Dirac electron in the presence of a static Coulomb poten-
tial and an arbitrary magnetic field. However, for a com-
plete description of a hydrogenic atom to the level of ac-
curacy presented, it is also necessary to include other
smail eff'ects such as the finite mass and size of the nu-

cleus, the interaction between the magnetic moments of
the electron and nucleus, the anomalous magnetic mo-
ment of the electron, and other radiative corrections. The
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TABLE I. Relativistic ( —E) and nonrelativistic ( —E„„)binding energies (divided by Z, in atomic units) of hydrogenic atoms in

a strong magnetic field 8 (in units of 2.35X10 G). For Zal, E„„in column 4 is obtained by the scaling relation of Eq. (5), while
E„'g' is obtained in each case by taking the nonrelativistic limit of the Dirac equation. The relativistic correction is given by
b'E =(E —E„,)/~E„, ~

The. numbers in column 4 give the previous most accurate nonrelativistic results.

Z B

0.1

20

0.57 x 10

0.23 x 1Q

—&nr

b
0.54752648040109

0.54752648040110
b

0.8311688966

0.8311688973

1.022213908

1.022213910
b

1.16453299

1.16453307

2.215396

2.215913

2.215398

0.831168897 0.831173226 —5.21 x 10-'

1.022213908 1.022218029 —4.03 x 10

1.164532989 1.164537038 —3.48 x 10

2.2153985 2.21540091 -1.15 x 10

0.5475264804011 0.5475324083429 -1.08 x 10

2QO

500

0.77 x 10-5
2.215393'

4 7266c

4.727134d

4.72708

4.7271451

6.2570877

4.7271233

6.2570326

4.61 x 10

8.80 x 10

2000 0.215 x 10—4

5000

9.2754

9.3102

9.30448

9 30464

9.304765

11.87341

9.304593

11.87308

1.85 x 10

2.78 x 10—'

5 25

50

20 800

0.8311688966

0.8311688973

1.022213908

1.022213910
b

1.022213908

1.022213910

0.831168897

1.022213908

1.022213908

0.831277196

1.022317006

1.023879534

—1.303 x 10 4

—1.008 x 10

-1.629 x 10

"Reference [14].
"Lower and upper bounds in Ref. [8].
'Reference [3].
Reference [4].

'Reference [7].
"Lower and upper bounds in Ref. [5].
gPresent results.

finite-nuclear-size correction can be calculated exactly in
the context of the method presented here by replacing the
Coulomb potential by an appropriate finite-nuclear-size
potential. This correction is of the order of (r„)/
(r, )—10 ' for hydrogen with 8 =0, where (r„) and (r, )
are the mean-square radius of the nuclear charge distri-
bution and electron orbital, respectively [21]. Even for
an intense magnetic field such as 8 = 10' 6, the Landau

radius is reduced by a factor of 15, so that the correction
is of the order of 1 part in 10 . The case of large Z and 8
is very interesting due to the large overlap between the
electron wave function and the finite nucleus. The finite-
nuclear-mass correction to the energy can be obtained to
lowest order by introducing the reduced mass in the non-

relativistic Hamiltonian. Higher-order corrections such
as QED corrections can be calculated perturbatively us-
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Relative relativistic correction 8E = (E E„„)/lE„—„~

for the ground-state energy of hydrogen as a function of the
magnetic field 8 (in units of 2.35X IO G). The results of the
present paper are given by open circles and plotted as a solid
line. The perturbation result given by Eq. (6), valid for the rel-
ativistic correction only for B 10, is plotted as a dashed
line.
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