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Two-Photon Bound State in Self-Focusing Media
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We derive a two-photon bound-state solution to the problem of quantum propagation of 1ight in Kerr-
eAect nonlinear media which classically would exhibit self-focusing and self-trapping. We propose an
experiment to see this two-photon bound state.
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Quantum effects in the propagation of light in non-
linear media have been the subject of much recent in-
terest. New phenomena, such as squeezed-light produc-
tion due to self-phase modulation, arise in quantum prop-
agation [1,2]. The resulting nonclassical sources of light
are not only of intrinsic physical interest, but are also po-
tentially applicable to optical communications. Of partic-
ular interest is the problem of temporal soliton propaga-
tion in optical fibers, described classically by the non-
linear Schrodinger equation. The work of Lai and Haus
[3] on quantum solitons in such fibers was based on ear-
lier work [4], where it was pointed out that the corre-
sponding quantum field theory is equivalent to that of a
one-dimensional system of nonrelativistic bosons interact-
ing through attractive 6-function potentials. Quantum
solitons are intimately related to bound-state solutions of
this system [3,4].

The nonlinear Schrodinger equation also describes the
propagation of light in self-focusing media at the classical
level [5]. Spatial soliton solutions, which correspond to
self-trapped beams of light, are known to exist for this
equation in planar geometries [6]. Such (1+1)-dimen-
sional classical solitons (i.e. , those in one transverse and
one longitudinal spatial dimension) have recently been
observed in electronic Kerr media with a positive non-
linear index coefficient [7]. The stability of these solitons
under soliton-soliton collisions has also been observed [8].

The question then naturally arises: What are the cor-
responding quantum spatial solitons? Since the classical
field theory for the spatial soliton is formally equivalent
to that of the classical temporal soliton, one suspects that
analogous quantum bound-state solutions should exist.
How these bound states are related to the classical spatial
soliton solutions in the correspondence principle limit is a
question which we will not attempt to answer here (how-
ever, in the case of the temporal soliton, see Lai and Haus
[3]). Here, rather, we shall concentrate on the solution
corresponding to the simplest bound state. This state
should be a number or Fock state of some self-replicating
mode of propagation. Since there are no fluctuations in
photon number, and hence in the intensity of a beam of
light in a number state, there should be no fluctuations in

the index of refraction arising from the Kerr nonlinearity.
Therefore the compensation of diffractive losses by the
nonlinear index change which occurs classically should
not be destroyed by quantum fluctuations. A number
state should thus lead to a stable, nondiffractive solution
of the quantum propagation problem. We have con-
firmed this by studying the problem of paraxial quantum
propagation [9] in Kerr-effect media.

This problem also reduces to that of nonrelativistic bo-
sons interacting through attractive 1D 6-function poten-
tials. The fundamental eigenstate consists of two bosons,
here photons, bound to each other through an attractive
6-function potential in their relative transverse coordi-
nate. One can think of this solution as being the unique
two-photon bound state which, for brevity, we shall call
the "diphoton. " The origin of the interaction between the
two photons is their exchange of a virtual excitation in an
atom. In the case of fast atomic response (i.e., when the
response rates are large compared with the bandwidth of
the light), there are no retardation effects, and the in-
teraction can be approximated by a static 6-function po-
tential. In the case of a two-level model of the atom,
when the light is detuned slightly above resonance, then
there is a virtual decrease in the energy of the system
during the exchange process. This leads to an attractive
potential between the photons.

At the classical level, the effective photon-photon in-
teraction corresponds to a Kerr, or n2, intensity-depen-
dent change in the index of refraction [10]. For attrac-
tive interactions, n2 is positive. In a classical temporal
soliton the self-steepening due to the nonlinear index
change balances the spreading of the wave packet due to
dispersion. Likewise, in a spatial soliton the self-focusing
due to the nonlinear index change balances the spreading
due to diffraction. Thus the classical (1+1)-dimensional
spatial soliton is characterized by a hyperbolic secant
transverse profile which does not change its shape with
propagation [6]. At the quantum level, this attractive in-
teraction gives rise to photon pairing, which is reminis-
cent of Cooper pairing in superconductors. It is the for-
mation of bound states of photons which prevents the
spreading of a beam of light due to diffraction. The di-
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The envelope field %" is normalized with respect to the
eAective vacuum fluctuation energy in the medium so

photon in particular is characterized by a two-point
correlation function which also does not change with
propagation.

For concreteness, consider the following possible exper-
imental realization (see Fig. 1). A uv laser produces
tightly correlated pairs of photons by degenerate spon-
taneous parametric down-conversion in a g crystal with
collinear phase matching. Two photons traveling in the
same direction are created essentially simultaneously in
this process [11],providing a good source for generating
the diphoton. The output of this two-photon light source
is focused by lens Ll into a very small focal volume at
the input face of a Kerr-eAect medium, such as an alkali
vapor possessing a resonantly enhanced g =nzno/2'
Inside this medium is a slab waveguide structure consist-
ing of two parallel, closely spaced mirrors, which provide
linear confinement of the light in one transverse dimen-
sion (the y direction). The light will be confined in the
other transverse dimension (the x direction) through the
nonlinear Kerr effect. Analytic calculations (see below)
show that the two-photon bound state should form if the
pair of input photons is injected into a sufticiently small
focal volume. Detection of the diphoton can be achieved
by means of coincidence detection of the output light by
detectors Dl and D2 as a function of their transverse
separation in the far field.

We study the propagation of light in Kerr-eAect media
using a recently formulated quantum field version of the
paraxial approximation [9]. The positive-frequency part
of the electric-field operator for a given polarization e is
written as a slowly varying envelope which modulates a
rapidly varying carrier wave. For (1+1)-dimensional
propagation we define

r

that it has units of a wave function in two dimensions.
The length scale LJ is the confinement dimension of the
slab waveguide, and nn and vs are the linear refractive in-
dex and group velocity at the carrier frequency, respec-
tively. To lowest order in the slowly varying envelope ap-
proximation (SVEA), the effective field theory formally
resembles a nonrelativistic many-body theory for a com-
plex scalar field +, which satisfies Bose equal-time com-
mutation relations

[+(x,r), +'(x', r)] =g"(x —x') . (2)

Here 6,( )(x —x') is a "coarse-grained" 6 function which
must be viewed with the caveat that it only acts as ex-
pected when integrated with slowly varying test functions.
Thus, 6, (x —x') =8,(x —x')8, (z —z') is not truly a
singular object; its value at the origin is determined by

I5, (x =x') =1/L„ ls, (z =z') =1/L, , (3)

where L and L, are the length scales of the SVEA, i.e.,
the characteristic lengths over which the envelope of the
quasimonochromatic paraxial fields can change in the
transverse and longitudinal directions, respectively [12].
For the experimental configuration in Fig. 1, these are
given by the waist diameter and Rayleigh range of the fo-
cal volume as set by lens L1. The volume L LJL, sets
the minimum localization volume for the photons in par-
axial fields [9].

The Hamiltonian for the system decomposes into

~env+ Hint ~ (4)

where 0,„, governs the propagation of the envelope in-
cluding diA'raction,
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and H;„i describes the nonlinear interaction (here, the
Kerr effect),

H;„,= —G2) dxdz[+'(x, z)]'le(x, z)]',
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where A is the area of the eAective two-dimensional
medium, and the 20 eA'ective coupling constant is
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FIG. 1. Schematic (top view) of an experiment to observe a
two-photon bound state in a g "medium. A pair of photons is
generated in a g ' crystal by degenerate parametric down-
conversion. The photon pair passes through filter F1 and is fo-
cused by lens L 1 into a resonantly enhanced g' medium. A
slab waveguide consisting of two closely spaced parallel mirrors
(top mirror shown) confines the light in the plane of the page.
Two detectors D1 and D2 are placed in the focal plane of lens
L2 following the cell. The diphoton is detected in coincidences
between D 1 and D2 as a function of their separation.

We seek a solution to this dynamical system which cor-
responds to steady-state propagation of the optical field.
According to the arguments put forth in a recent analysis
[13], the steady-state-propagation solution is character-
ized by the stationary states of the propagation Hamil-
tonian,

(H,„„+H;„,) ie& =C ie& .

This condition leads to spatial evolution equations for the
photon wave functions. The frequency of the light is
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where m, ff=hk/vg. The interpretation of F(x~,x2) is

that ~F(x~,x2)~ is the probability density of finding one
photon at x~, and the other photon at x2 [9]. In deriving
Eq. (10), the z-dependent part of the coarse-grained 6
function has been evaluated at the origin by use of Eq.
(3), and the x-dependent part is approximated by a true
8 function under the caveats described above [14].

The appearance of the length scale L, in the coupling
constant 6 solves some long-standing di%culties in the
theoretical treatment of the propagation of nonclassical
light [15]. The standard approach of decomposing fields
into normal modes with creation and annihilation opera-
tors is well suited for dealing with temporal evolution, but
is ill suited for describing spatial evolution [16]. Many of
the previous workers have treated this problem by model-
ing traveling waves as a train of photon wave packets,
and letting the propagation coordinate z play the role of
time. The width of the packet then plays a fundamental
role in the quantization. Indeed, in all previous analyses
of propagation of nonclassical light in Kerr media, the
eA'ective coupling constant implicitly depends on the
choice of length scale [13]. In our approach, the length
scale L, is unambiguously determined by the spatial
bandwidth of the incident radiation. In addition, our use
of the fundamental equal-time canonical commutator
avoids possible di%culties introduced by the ad hoc use of
the equal-z commutator postulated in previous analyses.

Using standard techniques, this two-body problem is
solved by separating variables in the center-of-mass and
relative transverse coordinates, X—:(x ~

+x 2)/2 and
=x ]

—x 2, respectively. The ansatz

F(x(,x2) =e'~xu(&)

leads to the reduced Schrodinger equation, with p=m, ff/

2,

A 8 u
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(12)

fixed by the carrier wave and does not change as a func-
tion of propagation distance z. The bound-state solution
is obtained by separating out the center-of-mass motion
in z, and assuming that the remaining wave function de-
pends only on the transverse variables, as is expected for
self-trapping. Substituting the two-photon ansatz

le& =„I d d d ' 'F(, )+'(, )+'(, ) ~0)

(9)
into Eq. (8) gives the eigenvalue equation,
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Equation (12) is known to have one bound-state solution,

u(&) =&@exp(—y[&~), (13a)

pQ 2x @co U g
h 2 c3n

(13b)

(14)

where n2 is the nonlinear refractive index measured in
units of cm /W, and all other quantities are measured in

cgs units. If n2 is wavelength independent, and if L, and
L~eek, the diphoton width will scale as k'. Thus, the
lighter alkali vapors should be more favorable for creat-
ing diphotons. To estimate the diphoton width d, we take
numerical values obtained from a measurement of n2 in
sodium vapor on the self-defocusing side of the D-line
resonance at X =590 nm (the nonlinearity should be of
the same magnitude with the same detuning on the self-
focusing side). Detuning 2 GHz from resonance in a
sodium vapor at T=195 C, Swartzlander, Yin, and Ka-
plan [19] measured ~n2~ =1.7X 10 cm W '. For this

The eigenvalue fixes the propagation speed of the dipho-
ton. Note that y depends explicitly on 6; therefore the
diphoton is unambiguously a quantum object.

In order to test the results of this analysis, consider the
proposed experiment shown in Fig. 1. The two-photon
light source determines the initial wave function at the in-

put face of the Kerr medium. This wave function can
then be decomposed into the bound and free eigenstates
of the Schrodinger equation. The probability of the for-
mation of bound states is determined by the overlap of
the initial wave function with the diphoton wave function.
The unbound amplitudes will undergo wave-packet
spreading (diffraction), while the bound state will main-
tain the width dictated by y in Eq. (13b). Thus the di-
photon survives spreading by diffraction even after propa-
gating a distance much larger than the Rayleigh range
associated with the diphoton width. After leaving the
Kerr medium the aperture filters out the diffracted (un-
bound) component, and the lens 1.2 performs a Fourier
transform of Eq. (13a) in the far field. A Lorentzian
two-point correlation function in coincidence detection by
Dl and D2 thus provides an unambiguous signature for
the detection of the diphoton.

An important experimental consideration is the re-
quirement of sufhcient binding strength. If the diphoton
width is too large, it can be unambiguously detected only
after a very long propagation distance. If this distance is
too large, absorption becomes important and the diphoton
will decay. For concreteness, we consider a resonantly
enhanced Kerr medium such as sodium vapor previously
shown to exhibit self-focusing and self-trapping [17] and
recently used to produce spatial dark solitons [18]. The
diphoton (power) width is obtained from Eq. (13b) in
terms of the experimentally relevant parameters,

X LyL,d= x10 cm,
8tr novg hc n2
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temperature, we calculate the Doppler width to be h, vg
=1.64 GHz. For these parameters, the linear absorption
length is 3.8 cm. The vapor is su%ciently dispersionless
at this detuning that the ratio between phase and group
velocities is essentially unity; also no=1. We take the
longitudinal localization length L, =10 pm as set by the
length of the focal volume of lens Ll, and the slab
confinement thickness LJ =X. This gives a diphoton
width d=30 pm. Its Rayleigh range xd /X is 0.48 cm
(this is a slight overestimate since we have assumed a
minimum-uncertainty wave packet in making this calcu-
lation). This distance is well below the absorption length
of the sodium vapor given above.

In conclusion, we have shown that a two-photon bound
state in self-focusing media should exist theoretically, and
that it should be detectable experimentally. Such bound
states are important for our understanding of quantum
solitons and their associated quantum field theories.
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