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A technique for estimating the large-order QCD perturbative contributions to the total e *e ~ total
cross section is presented which is based upon the renormalization group and momentum analyticity.
Our estimate for the coefficient of (a,/7)? has recently been confirmed by two exact calculations. We
find that the effective expansion parameter is, in fact, not a,/z but rather 4x2eb,(a,/n), where b, is the

first coefficient in the expansion of the B function.
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Asymptotic freedom dictates that perturbation theory
governs the high-energy behavior of the total hadronic
ete ™ annihilation cross section [1]. Indeed, at
sufficiently high energies this leads to the well-known and
important result that R, the ratio of this cross section to
that for u*u ™ pair production, is given by the naive
pointlike parton-model result, namely X072 Q; being the
charge of the ith quark species. Leading corrections to
this can be systematically and reliably calculated using
QCD perturbation theory:

Rlg/u.a, ]~ (Z 072 2 ralgu)a/m™. ()
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Here, a; is the conventional QCD fine-structure constant
normalized at the arbitrary scale y and g the four-
momentum delivered by the e Te = pair. The first two
coefficients in this expansion are easy to obtain; further-
more they are both scheme and g2 independent: rg
=r;=1. The first nontrivial correction is r, which was
calculated some ten years ago by three independent
groups [2]. In the modified-minimal-subtraction (MS)
scheme with five flavors they found r,(1)=1.41. Al-
though this gives a modest correction to R, its effect on
the extraction of a; and A, the QCD scale parameter, are
quite significant.

About two years ago the three-loop contribution was
first calculated [3] and found to give 3(1) =64.9. This is
a remarkable result since it implies that the three-loop
contribution actually exceeds that of the two-loop one.
Furthermore, it decreases the estimate of A, as extracted
from the data, by roughly a factor of 2. Since R plays
such a central role in our understanding of QCD, being in
many ways the cleanest prediction of the theory, it is im-
portant to understand the origin of the coefficients and
whether it is reasonable to expect large numbers. This is
particularly true since it is known that the series diverges
[4,5]. In principle, a very accurate measurement of R is
the least ambiguous method for measuring a; and uncov-
ering new degrees of freedom. Thus, some reasonable es-
timate of the higher-order contributions is certainly desir-
able; their precise value may be of less significance than
having some reliable, though rough, estimate, especially

1388

since R is only measured to a few percent at best. Thus
all one really needs to know is whether, for example,
r3~5 or ~50. Obviously, the brute force evaluation of
all of the Feynman diagrams contributing in each order
rapidly becomes an impossible task even with sophisticat-
ed computer algorithms; (already the evaluation of rj in-
volves hundreds of graphs). Furthermore, when accom-
plished, their significance may be questionable. Some al-
ternative technique is required.

Last year this problem was addressed [5], the results of
which led to the asymptotic estimate

riy(1)= —12, (2

which is almost a factor of 6 smaller than the explicit cal-
culation of Ref. [3]. The analytic expression for the esti-
mate of r,(1) is given explicitly in Eq. (22) below. Very
recently the explicit calculations have been repeated [6]
by two independent groups (one being the original au-
thors of Ref. [3]1), both obtaining r3(1)=—12.8 in re-
markable agreement with our estimate above. This more
or less precise agreement, though gratifying, should not
be taken too seriously since our estimate is probably only
accurate up to corrections of O(by/nbt), the b; being
coefficients in the expansion of the B function [see Eq. (6)
below]. Conservatively this means that the estimate (2)
could have as much as a 20% error though it is probably
smaller than this, as discussed below. What should be
taken seriously though, is that the result, Eq. (2), even
with a 20% error, was in serious disagreement with the
original calculation.

It is the intent of this paper to present the essence, and
some of the details, of how the formula, Eq. (22), and
consequently, the result, Eq. (2), is derived. Our strategy
is to exploit two general features of the full theory that
remain valid in the perturbative sector, namely, renor-
malizability and analyticity. The renormalization group
(RG) dictates that the polarization function I(g 2/u? a;),
whose absorptive part is proportional to R, is, in fact, not
a function of g2 and a, separately [as is the case for indi-
vidual Feynman graphs and, therefore, for each term in
the perturbative series, Eq. (1)] but, rather, is a function
of a single variable (¢ */u?)exp(1/47b a;+ - - - ). Conse-
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quently, analyticity in g2 does not peacefully coexist with
analyticity in a,; thus the perturbation expansion as ex-
pressed in Eq. (1) is at odds with renormalizability and
g? analyticity. The resolution of this potential problem is
that the series diverges so that IT is in fact not analytic in
a; at a, =0. By judiciously exploiting the constraint that
IT is to have a power-series expansion in a; ultimately
leads to the estimate Eq. (2). Most investigations of
high-order estimates of perturbation theory have focused
on nongauge theories and used as their starting point a
path-integral representation [7]. The problem of extend-
ing these techniques to gauge theories has run into dif-
ficulties associated with ghosts, gauge invariance, and re-
normalizability. The latter is, of course, not explicitly en-
coded in the path integral; it leads to a sufficiently singu-
lar behavior in a; that it is believed that the series is not
Borel summable. This does not mean, however, that one
cannot estimate the coefficients; indeed, in what follows,
renormalizability plays a central role.

To begin, then, let us recall some standard definitions.
The conventional photon polarization tensor is given by

M,(q) =i [ d*xe0| T1j,(x),(0)1]0) (3)
E(ng;lv_q;;qv)n(qz,as) , (4)

where j,(x) is the electromagnetic current operator. Its
absorptive part is AbsII=R/12x. Both IT and R have
perturbative expansions, as, for example, expressed in Eq.
(1). Since R is a physical quantity it cannot depend on u
and so satisfies a homogeneous renormalization-group
equation (dR/du=0). In massless QCD this implies
that R is exg)ressible as a function of a single variable
(g¥/u?)e k@ =3

Rlg¥u?a,(w)=f(z). (5)

Here g(u) is the renormalized gauge coupling (g?
=4ra,) and K(g)=[%dg'/B(g'). In perturbation theory
Bg)= —g3(by—byg>+ ---)s0

2K(g) = 1/b\g*—b,/bTIn(b\/g?+b)+ - . (6)

Further terms in this expansion are analytic in g2. Usu-
ally, the renormalization-group constraint is expressed in
terms of the running coupling constant g(z) defined by
2K(g) =2K(g)+1, where t =Inq%/u>. This is equivalent
to the relationship z =e2K®. Equations (1) and (5) can
be reexpressed in the form

Rlg*/p%a, ()1 =RI1,a,(1)]
~[z0?) £ n@wm, o

so it is sufficient to estimate r,(1). As already men-
tioned, the first two coefficients are scheme (and momen-
tum) invariant, the rest being scheme and ¢ 2 dependent.
Since j, is a composite operator, an additional subtrac-
tion beyond the usual multiplicative ones needs to be in-

voked in order to render I,, finite [2,8]. This subtraction
is closely related to the subtraction that is required in
writing a dispersion relation for IT which expresses its an-
alytic properties in g% When g2— o, R~Y02, so a
once-subtracted dispersion relation is required. To avoid
dealing with this unknown subtraction, it has become
conventional to work with the quantity D(g%*/u%g?)
=9I1(qg*/u?g?)/dt. This, like R, also satisfies a homo-
geneous RG equation and is therefore also expressible as
a function of z alone. It satisfies the following represen-
tation:

2 2 oo "2 "2
D L, 2 = ——L R _L 2 8
PE g 122270 (g2—¢q2)? #z’g (®)
=_q_2_e2/<(g)f°° dz f(z)
u2 0 12”2 [Z_(qZ/uZ)eZK(g)]Z :
)

Equation (9) thus incorporates two essential features of
the theory, namely, renormalizability and analyticity in
g2, that are not explicitly encoded in the path integral. It
will be convenient to express the perturbative expansion
of D, analogous to (1), in the form

D(q*/u’g?) = ;0(—1)”d,,(q2/u2)g2". (10)

The RG can be used to relate the absorptive part of D to
R in the following way:

Absp=ﬂ%(g”l%, an

from which we can deduce (n > 1)

ra=—(—ag?)n*1—3_ Imd,,+|+£2—1md,,+-~-
nb, b,

12)

Clearly, Imdo=Imd; =0. Notice also that, by substitut-
ing (11) into (7), one can derive the inverse of (12),
namely, an equation for the d,, in terms of the r, [9].

Our plan now is to try to use the representation (9) to
glean useful information about the large-n behavior of the
d, and consequently of the r,. To do so we first need to
invert (10) so as to express the d, in terms of D itself. To
do so it is convenient to analytically continue in n by in-
troducing a function d(s,q%/u?) which reduces to d,
when s=n; s is to be considered a complex variable.
Then the required formula is [5,10]

2 2
2/,2) = dg — a2 —|‘—XD q 2 13)
d(s,q*/u®) j:zm_( g?) [uz,g]. (
The contour can be chosen to wrap around the discon-

tinuities in D. Substituting the representation (9) into
(13) and interchanging orders of integration gives

g = [ L@ e, aa
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FIG. 1. Singularities of the function ®, Eq. (16), in the
k=1/g? plane. In the g? plane the string of poles lies along a
loop accumulating at the origin with increasing density.

where

dg2 (_gZ)—l—s
¢ 2mi z_el+2K(g) .

O(s,t,z)= (15)
The singularity structure in the g2 plane is complicated
by an infinite sequence of poles which accumulate at the
origin [11]. The situation is considerably simplified by
transforming to the k =1/g? plane where

_di (__k)s—l

o 2mi z _el+2K(k) :

(s, t,z)= (16)
The singularities in the k plane fall into three distinct
categories as illustrated in Fig. 1: (i) a cut along the real
positive axis needed to define (—k)* ™' (this becomes im-

(_km)x—l

potent when s is an integer); (ii) an infinite sequence of
almost equally spaced poles at k = bt +Inz £ 27Nil,
N=0,1,2,..., arising from the vanishing of the denom-
inator—the precise location of these poles is modified by
higher-order terms in the B function [see Eq. (6)]; (iii) a
cut at —b,/b, needed to define e¥* as a single-valued
function— notice that higher-order coefficients in 8 do not
affect the singularity structure in k. In the g? plane the
sequence of poles lies along a closed curve whose density
increases without bound as it approaches the origin.
Furthermore, there is a potential essential singularity at
g%=0 arising from the e* in the denominator.

The integral in (16) cannot be explicitly evaluated even
in the case where only the first or second terms in B are
retained [12]. However, when s becomes large we can use
a saddle-point technique to estimate ®. Saddle points
occur when

ks—‘;=(s~1)[—ﬁ%—)}n—ze—'—z"‘g)l. amn
g g

For large s, the solutions to this fall into three classes
reflecting the three classes of singularity: () k=b,(s
—1)+by/by; (1) 2K (k) = t +1Inz £ 22Ni, corresponding
to the string of poles, and (iii) B(g)/g’=0 or &
= —b,/b,, corresponding to the lip of the left-hand cut.
Corrections to these are all of O(1/s). In principle, the
second two of these contributions could, of course, be
evaluated directly using standard techniques. Suppose
for the moment, however, we consider all contributions as
approximated by Gaussian integrals; then the generic

| structure of our result will be of the form

‘ (8)

d(s,qz/uz)szm dz f(2) 9

m Y0 l271‘2

where k,,(s,t,z) is the position of the mth saddle point
and

_|s—1
¢(km)=[ km ]

K (km) +2K'(km)_“ (S_Z)

19
Kl(k"' ) kl” ( )

(As usual, due care must be exercised in ascribing the
correct phase structure to be associated with each k,,.)
From this expression it is clear that, for large s, the dom-
inant behavior is given by the contribution of the first
saddle point at k;~b,(s—1) since this leads to an s*
type of behavior; the other saddle points (in actuality
poles and cuts) lead only to an ordinary power behavior
~c?, where ¢ is s independent. Another distinguishing
and crucial property of the first saddle point is that its po-
sition does not depend on z. This means that its contribu-
tion to (18) can be reexpressed as
5 1/2
s—1
ﬂ¢(k 1) ki'D

2
9
2 9

27,2y ne
d(s,q*/u )~[ AT

]COSHS .

(20)
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e

9t 2rolo)1'? 5 —

m

Using Eq. (11), one can now extract the leading behav-
jorask,~b,(s—1)— oo:
bl k‘f_3
247 R2rpk)1V?

Substituting this into Eq. (12) and reexpressing the result
in terms of a gamma function gives

@n

Imd(s,1) = — COSTS .

=¥ 1 T(n+b")
€ 2 n—1
= ——(4n’eb —_—, (22)
ra(1) - (4r’eb)) i)’
where b'=b,/b{. With five flavors this gives
r;(1)= —13.4, (23)

in excellent agreement with the new exact calculations
[6].

Various comments are in order: (a) This estimate is
slightly larger than my original estimate [5] because I
have tried to keep all terms of O(b'/n). It is tedious to do
this consistently since the corrections to the saddle-point
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estimate and the neglected contributions are difficult to
evaluate. The other saddle points give contributions that
are down by terms of O(c/n)"; furthermore, there are
other exponential corrections ~—e ~” which have been
neglected and are expected to be small. The leading
correction to (22) coming from the dominant saddle point
(beyond the b'/n terms) is of O(b3/bin?). This correc-
tion represents the first appearance of scheme dependence
in our estimate; it vanishes as n— oo provided a scheme
is chosen in_which b3, for example, is not *“unnaturally”
large. In MS with five flavors, b3/bi=0.4 so the
scheme-dependent contribution is very small; one should
compare b3/bin?=0.05 to by/b#n=0.23. Thus, implicit
in the expression (22) is a choice of a wide class of
schemes, satisfying the above constraint. In principle,
one could formulate the problem in a scheme-invariant
fashion and only evaluate, or estimate, scheme-invariant
quantities.

(b) Equation (22) explicitly exhibits both the diver-
gence of the series and the lack of Borel summability;
indeed the r, grow like n! with

ru+\/ra~4n’ebin . (24)
Our estimates for the next two coefficients are
ra(1)= —158.6, rs(1)= —2609.8. (25)

A major question that will be addressed in later papers is
how to make sense out of this uncontrollable growth in
the coefficients [5], especially since the series is not Bor-
el summable. Notice, incidentally, that Eq. (24) im-
plies that the effective expansion parameter is not a,/n
but rather 4r’eb;(a;/n) =5.21(a,/n) = + (taking a;
=0.15). Naively changing the sign of &, induces a factor
(—1)" into r, which would allow the possibility of Borel
summing. This suggests that infrared-free theories ought
to be summable.

(c) Notice that our estimate has an absolute normali-
zation; in fact, it is given by the value of d,(1) which is
unity.
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