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The homogeneous cosmology of Bianchi type IX (mixmaster cosmology) is quantized in a supersym-
metric form, allowing the Dirac-type square root of its Wheeler-DeWitt equation to be taken. A super-

symmetric solution is given exactly in closed form.

PACS numbers: 98.80.Bp, 04.60.+n, 11.30.Pb

Homogeneous but anisotropic cosmological models of
Bianchi type IX have long occupied an important place in
theoretical cosmology. Such models were first introduced
and studied in detail by Belinsky, Khalatnikov, and
Lifshitz [1] in an attempt to exhibit in a spatially homo-
geneous model the generic form of the cosmological
singularity implied by general relativity. Independently,
Misner studied the Bianchi type IX model [2] and intro-
duced the name “mixmaster cosmology” to describe its
peculiar way of approaching the initial singularity in an
infinitely oscillating and chaotic way.

In its classical form the model has served as an impor-
tant example of “chaos” in general relativity [3]. In its
quantized form, first studied by Misner and co-workers
[4], the model served to illustrate the concept of “‘super-
space” in a spatially homogeneous context called *“mini-
superspace.” (We are referring here to the superspace of
geometrodynamics.) Misner and co-workers have shown
that asymptotically close to the initial singularity the
model becomes equivalent to a certain triangular quan-
tum billiard on a space of constant negative curvature
whose level statistics was recently analyzed numerically
in a separable approximation [5] and also in the general
nonseparable case [6].

The quantized model has also been used as an example
[7] to exhibit the consequences of the proposal by Hartle
and Hawking [8] or other proposals [9] for the boundary
condition distinguishing the physically realized solution of
the Wheeler-DeWitt equation. In all studies of the quan-
tized Bianchi type IX cosmologies the solutions given
were either approximate or numerical. In the present pa-
per we present a new approach to the quantization of the
Bianchi type IX cosmology. We shall show that due to a
hidden symmetry, which so far seems to have gone unno-
ticed, the quantization can be performed in a way which
fully respects the given classical limit of the model while
introducing a supersymmetry in its quantized version. It
may be hoped that this supersymmetric model could also
be derived directly from the full Lagrangian of super-
gravity. Such derivations have been given in the litera-
ture for the (spatially flat) Bianchi type I [10] and the
isotropic Friedmann [11] cosmologies, which are con-
tained formally as special cases in the Bianchi type IX
model by putting the curvature and the anisotropy to
zero, respectively. There remain of course significant
differences between the Bianchi types I and IX (infinite
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versus finite volume) and between the Bianchi type I1X
and the closed Friedmann universe (existence versus
nonexistence of classical vacuum solutions). However,
these remaining differences are not important in the
present context: Bianchi type I may be given a finite
volume by imposing the topology of a 3-torus, and the
closed Friedmann universe without matter appears quan-
tum mechanically by vacuum fluctuations (see, e.g., [4])
just as the empty Bianchi type IX universe does (see
below). The supersymmetric quantization provides the
homogeneous universe with additional fermionic degrees
of freedom. Nevertheless it leads to a striking simplifi-
cation of the quantized system, whose Wheeler-DeWitt
equation, restricted to the sector where the fermionic
variables vanish, is exactly solvable for its supersym-
metric “ground state,” despite the fact that the classical
limit is chaotic.

The homogeneous Bianchi type IX metric has the form

ds?=—NZ%dt*+(67) ~'2%e?(e?); 00/, n

where N, a, and ;; are functions of ¢ only, and the o' are
the 1-forms dual to the basis vectors on the three-sphere
SO(3). N is the lapse function, which we shall choose as
N =1, (6n) ~"?exp(a) is the scale factor of the universe,
and the traceless diagonal matrix B;; =diag(B+++38-,
B+—~/3B-,—2B+) parametrizes the anisotropy of the
spacelike cross sections ¢z =const. For a discussion of the
classical aspects of this cosmology we refer to [12], to
whose notation we adhere as much as possible. Its “su-
perspace Hamiltonian” Hy, satisfying the Hamiltonian
constraint Hy=0, is given by

2Hy=G"'p,p,+U(q), 2)

where the generalized coordinates g¢*=(a,B+,8-) with
v=0,1,2 span the minisuperspace with the metric
G"'=diag(—1,1,1) =G,,, which we may choose as flat,
making use of the fact that superspace is defined only up
to conformal transformations [4], thereby fixing our
choice of factor ordering, and where the p, are the canon-
ically conjugate generalized momenta. The potential U
can be written as U =e**[V(B8+,8-) — 1], where

3V =exp(—8B+)+2(coshd~/38- — 1)exp(48+)

—4(cosh2/3B-)exp(—2B+)+3.
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It defines an apparently complicated potential well,
depending explicitly on the timelike coordinate «, and
presenting exponentially steep and moving potential walls
in the (8+,B8-) plane with triangular symmetry and nar-
row channels at the three corners, reaching infinity.

The key point we make in the present work is the ob-
servation that the potential U(g), its complicated form
notwithstanding, has a hidden symmetry beyond the tri-
angular symmetry. This additional symmetry can be
recognized by rewriting U(q) in the form

U(q) =Guvﬂ_ﬂ , 3)
dq" 9q"

with 9= ¢ e2Tr(e?¥). It is easy to check that this is
indeed a correct representation of U. The form (3) of the
potential ensures that the Hamiltonian (2) is the “boson-
ic” part of a supersymmetric Hamiltonian [13]. Having
uncovered this symmetry, it is natural to preserve it when
quantizing the system. Thus the quantized superspace
Hamiltonian is written in the form

h
=1 4
H=1(00+00) =Ho+ za“avl v, @
with the non-Hermitian supercharges
0 = . 0
o=y’ |p+it |, O=7"|p—io|,
dq dq

where the y*, ¥" satisfy the spinor algebra
yiyttyty i =0=y"yt +ytyt,
(%)
Ty =G
It follows that Q2=0=Q? The algebra (5) has an
eight-dimensional matrix representation, which is equiv-
alent to a representation in terms of three Grassmann
variables " and their derivatives y"'=n", y"=G" 8/9n*,
which we shall now adopt. We note that the quantized H
differs from the classical H( by a spin term, but this term
vanishes in the classical limit. As H commutes with the
“fermion number” n"98/dn" we may decompose any solu-
tion of H¥ =0 as

‘1’=A++BVTIV+5‘8vuxcx77vn”+A~n°n]n2, (6)

where the eight functions 4+, B,, C", and A - depend on
the q”=(a,ﬂ+,ﬁ:) only. Supersymmetric solutions must
satisfy Qy=0=Qy. They are obtained as
A+=ate Folg)h ,

@)
Bv= af+(q) e —ﬁ(q)/h’ CV=GV” af—(q) e

9q" 0q"

where a + are constants and f + (q) are functions satisfy-
ing the equations

9,80 f+(g) _
dg" aq dg*

+o(g)/h

G* {h (8)
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We note that for Bianchi type I we have ¢ =0 and Eq.
(8) admits plane-wave solutions, which have been found
in [10]. For the present case, ¢><0 nontrivial solutions of
Eq. (8), if they exist, are still waves in superspace of the
asymptotic form f+ ~exp(iS/h), whose characteristics
(p,=98S/8g") are constrained by G"p,p, =0=G"p,d¢/
dq*.

In the following we shall in any case concentrate on the
solutions 4 + in the empty and the filled fermion sectors,
respectively. In the special case of the Friedmann
universe, where B+ =p_ =0, these are the only com-
ponents of ¥, and our result reduces to one given earlier
for this case [11]. Without yet committing ourselves to a
particular statistical interpretation of the wave function
of the universe it seems reasonable to demand that ¥ does
not diverge for |+ |— oo at fixed a. This rules out solu-
tions 4 —#0; i.e., we must fix a - =0 (and also - =0).

It is interesting to note that the solution we find, if spe-
cialized to the case of the isotropic Friedmann universe
B+=0=p_, is not the Hartle-Hawking state [8], which
would be obtained from the function 4 - (with 44+ =0)
we discarded due to the boundary conditions following
from the presence of B+,8—. It should be noted, howev-
er, that the Hartle-Hawking state was calculated in [8]
for a nonvanishing cosmological constant A (and here the
comparison is made for A— 0 in the solution), which
might change the state selected by their boundary condi-
tion. Let us also mention that an exact solution of the
quantized Bianchi type IX model has also been claimed
by Kodama [14] using nonconventional variables and not
invoking supersymmetry. Because of the latter fact our
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FIG. 1. |¥|? as a function of B+ (right scale) and B— (left
scale) with its maximum normalized to | for fixed a=—35,
h =1. The positions of the exponentially steep walls of ¢ on the
equilateral triangle 28+ —a+ 3 In3A =0 and sides rotated by
=+ 120° around B+ =pf- =0 are also shown.
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FIG. 2. |¥|? as in Fig. 1 for fixed a=1, A =1. Also shown
as a circle is the mean-square fluctuation in Gaussian approxi-
mation.

solution cannot be equivalent to Kodama’s, but so far a
detailed comparison of the results in [14] and the work in
[4] and [7] or the present work has resisted all efforts.
The statistical interpretation of the wave function, ac-
cording to various proposals in the literature, can be
made (i) by using |¥|? as an unnormalized probability
density [8], (ii) by using the conserved Klein-Gordon-
type density associated with the Wheeler-DeWitt equa-
tion [4,15], or (iii) by constructing a Dirac-type density
conserved by the equation Q¥ =0 [10]. According to (i),
P(a,B+,8-) =exp(—2¢/h) is the unnormalized proba-
bility density to observe given values of a,B8+,8-. It de-
cays very rapidly to zero for scale factors e“ larger than
the Planck length, because there is neither a cosmologi-
cal constant nor a matter field in the present model.
w(a,B+,8-) =P/fdB+dB- P is the conditional proba-
bility density to observe given values of S+,8— at fixed a.
It becomes infinitely broad for a— — oo as the cosmolog-
ical singularity is approached, and extremely narrow for
a> 1 where {3)=(BL)=e ~?%/8. In Figs. 1 and 2 we
present a plot of this conditional probability density (in
arbitrary units) over the (84,8-) plane for a=—135 and
1, respectively, in natural units (A =1). However, one
may well question whether a statistical interpretation
should be applied to the wave function in the present
case, as the system never leaves the realm of quantum
fluctuations and therefore remains unobservable for any
conceivable definition of a measurement. Indeed, the
probability density associated with the interpretation (ii)
remains zero in the present case. It would be nonzero as
soon as a tunneling out of the Planck regime became pos-
sible due to either the presence of a cosmological constant
or a coupling to a massive field rendering the solution ¥

complex [9]. It would be very interesting to extend
the present analysis by including any of these features,
without destroying the supersymmetry. Finally, the in-
terpretation (iii), somewhat unexpectedly, is not applic-
able in the present case, contrary to the Bianchi type I
case [10], because QA4 + =0, if solved for 84 +/0a, yields
hoA44/9a=—(9¢/da)A+; ie., it describes a nonunitary
evolution of A4+ in the timelike coordinate a and a con-
served probability density cannot be constructed.

In summary, we have exhibited a hidden supersym-
metry of the mixmaster cosmology and preserved this
symmetry in its quantized version. The supersymmetric
state for vanishing Grassmann variables has been given
exactly. It describes the zero-point fluctuations replacing
the classical mixmaster oscillations.
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