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The homogeneous cosmology of Bianchi type IX (mixmaster cosmology) is quantized in a supersym-
metric form, allowing the Dirac-type square root of its Wheeler-DeWitt equation to be taken. A super-
symmetric solution is given exactly in closed form.
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Homogeneous but anisotropic cosmological models of
Bianchi type IX have long occupied an important place in

theoretical cosmology. Such models were first introduced
and studied in detail by Belinsky, Khalatnikov, and
Lifshitz [1] in an attempt to exhibit in a spatially homo-
geneous model the generic form of the cosmological
singularity implied by general relativity. Independently,
Misner studied the Bianchi type IX model [2] and intro-
duced the name "mixmaster cosmology" to describe its
peculiar way of approaching the initial singularity in an
infinitely oscillating and chaotic way.

In its classical form the model has served as an impor-
tant example of "chaos" in general relativity [3]. In its

quantized form, first studied by Misner and co-workers
[4], the model served to illustrate the concept of "super-
space" in a spatially homogeneous context called "mini-
superspace. " (We are referring here to the superspace of
geometrodynamics. ) Misner and co-workers have shown

that asymptotically close to the initial singularity the
model becomes equivalent to a certain triangular quan-

tum billiard on a space of constant negative curvature
whose level statistics was recently analyzed numerically
in a separable approximation [5] and also in the general
nonseparable case [6].

The quantized model has also been used as an example
[7] to exhibit the consequences of the proposal by Hartle
and Hawking [8] or other proposals [9] for the boundary
condition distinguishing the physically realized solution of
the Wheeler-DeWitt equation. In all studies of the quan-
tized Bianchi type IX cosmologies the solutions given

were either approximate or numerical. In the present pa-

per we present a new approach to the quantization of the
Bianchi type IX cosmology. We shall show that due to a
hidden symmetry, which so far seems to have gone unno-

ticed, the quantization can be performed in a way which

fully respects the given classical limit of the model while

introducing a supersymmetry in its quantized version. It
may be hoped that this supersymmetric model could also
be derived directly from the full Lagrangian of super-
gravity. Such derivations have been given in the litera-
ture for the (spatially flat) Bianchi type I [10] and the
isotropic Friedmann [11] cosmologies, which are con-
tained formally as special cases in the Bianchi type IX
model by putting the curvature and the anisotropy to
zero, respectively. There remain of course significant
difl'erences between the Bianchi types I and IX (infinite

where N, a, and p;t are functions of t only, and the cr' are
the 1-forms dual to the basis vectors on the three-sphere
SO(3). N is the lapse function, which we shall choose as
N =1, (6tr) 't exp(a) is the scale factor of the universe,

and the traceless diagonal matrix p;t =diag(p++ J3p —,
p+ —J3p —,—2p+) parametrizes the anisotropy of the
spacelike cross sections t =const. For a discussion of the
classical aspects of this cosmology we refer to [12], to
whose notation we adhere as much as possible. Its "su-
perspace Hamiltonian" Hp, satisfying the Hamiltonian
constraint Ho =0, is given by

2Hn =G"'p„p,+U(q), (2)

where the generalized coordinates q'=(a, P+,P —) with

v =0, 1,2 span the minisuperspace with the metric
G"'=diag( —1, 1, 1) =G„„which we may choose as flat,
making use of the fact that superspace is defined only up
to conformal transformations [4], thereby fixing our
choice of factor ordering, and where the p, are the canon-
ically conjugate generalized momenta. The potential U
can be written as U=e '[V(p+, p ) —1], where

3 V = exp( —8P+ ) + 2 (cosh4 J3P —
1 )exp(4P+ )

—4(cosh2 J3P )exp( —2P+ ) + 3 .

versus finite volume) and between the Bianchi type IX
and the closed Friedmann universe (existence versus
nonexistence of classical vacuum solutions). However,
these remaining diAerences are not important in the
present context: Bianchi type I may be given a finite
volume by imposing the topology of a 3-torus, and the
closed Friedmann universe without matter appears quan-
tum mechanically by vacuum fluctuations (see, e.g. , [4])
just as the empty Bianchi type IX universe does (see
below). The supersymmetric quantization provides the
homogeneous universe with additional fermionic degrees
of freedom. Nevertheless it leads to a striking simplifi-
cation of the quantized system, whose Wheeler-DeWitt
equation, restricted to the sector where the fermionic
variables vanish, is exactly solvable for its supersym-
metric "ground state, " despite the fact that the classical
limit is chaotic.

The homogeneous Bianchi type IX metric has the form

s = Ndt + (6tr) — e&~(e 2ti) rsicst
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(3)

H = —, (QQ + QQ ) =Hi)+ — [
Bqq q

with the non-Hon-Hermitian supercharges

Q = ii" p,+i, Q =y' p, —i

where thee y, y satisfy the spinor algebra

V'V"+V "V"=0=V' "+ " '
Y tt Y

(5)
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