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Fast Delocalization in a Model of Quantum Kicked Rotator
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We present numerical results on a model in which quantization of chaos (instead of suppression of the
diffusion) leads to a diffusive or even faster excitation with infinite conductance in the corresponding
solid-state model. We suggest a possible mechanism for this eAect.

PACS numbers: 05.45.+b, 72. 15.Rn

Since 1979 [I], the problem of quantum eA'ects for the
diAusive excitation of systems which are classically chaot-
ic has attracted the attention of many researchers [2-5].
The reason for this interest seemed to be the importance
of the quantum eA'ects on the complexity of the corre-
sponding classical dynamics and, in particular, the locali-
zation eAect observed in the quantum version of the clas-
sical standard map [1-5]. To our knowledge, all pro-
posed modifications to the initial kicked-rotator model [1]
have led to excitation localization for the one-dimensional
case with a perturbation periodic in time. It was later
shown that quantum localization of chaos in such a
mathematical model also leads to a better understanding
of the microwave ionization of a highly excited hydrogen
atom [4,6].

The other interesting feature of this phenomenon is
that it can be considered as a dynamical counterpart of
Anderson localization in solid-state physics [3]. In order
to make a connection between the two problems, one
needs to interpret the quantum number of the unper-
turbed rotator as the site number for some corresponding
solid-state model. To our knowledge, all proposed
modifications to the initial kicked-rotator model [I] have
led to excitation localization.

We present here a model displaying chaotic classical
behavior with unbounded quantum excitation. Contrary
to the previously studied cases, we observe not only a
diAusive excitation but also a free propagation in the
momentum space in the region of the parameters for
which the classical motion is completely chaotic. There-
fore, in this case the conductivity of the corresponding
solid-state model is infinite and therefore this eAect may
be interpreted as the existence of a ballistic excitation,
which in some sense is analogous to a superconductive
flow.

First, we briefly discuss the classical dynamics of our
model. This is defined by the following area-preserving
map of the plane:

p =p+Ksin(x), x =x Lsin(p), —

where K and L are positive parameters and the bars
denote the new values of the variables after one iteration.

The physical meaning of p and x are the momentum
and position of the classical particle. Also, the parameter
K characterizes the strength of the periodic perturbation

and the second equation in (1) comes from the dispersion
law of the free propagation between two kicks. For
K=L, this model was investigated in [7], where it was
used as a model for the motion of a particle in a plane
perpendicular to a magnetic field under the influence of
some electromagnetic wave.

An example of the motion in the symmetric case
(K=L =1.2) is given in Fig. 1(a) where the main part of
the phase plane is covered by invariant circles and un-
bounded motion only takes place in a narrow stochastic
layer around the separatrix. By decreasing the common
value of the parameters, the chaotic region becomes ex-
ponentially small (for K=L =0.4 this region is negligi-
ble). For a larger value of the parameters, the stochastic
region becomes larger and for K=L=5, there is no visi-
ble island of stability: DiAusive excitation in p and x
takes place.

Figure 1(b) shows an example of the motion in phase
space for the nonsymmetric case (K=1.2, L = I). The
characteristic feature of the motion in this case, where
the values of the parameters are not too large, is the ex-
istence of vertical invariant curves which restrict the
motion in the x direction but allow unbounded motion in
the momentum space p. As the value of the parameters
increases, these curves are destroyed, allowing diAusion in
the x direction, and for values of the parameters around
L=2 and K=4, islands of stability are no longer visible.
In such a situation, the motion is characterized by two
diA'usion coefficients in the p and x directions and the
larger coefficient corresponds to the larger value of the
two parameters. Notice that for small p and KL =const,

FIG. 1. Phase plane (2trx 2tr) of map (1) for parameter
values of (a) it =L =1.2 and (b) lt' = l.2, L =1.
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where we used units for which 6 is the dimensionless
Planck constant, n = —id/dx, p =An, and 8~(t) is a
periodic delta function of period l.
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with K((1, the motion is described by the standard map
[8].

The quantized motion of model (1) is described by the
following Hamiltonian:

H =L cos(An) +icos(x) Bt (t),

The corresponding evolution operator for one period is
given by

U =exp [—iL/A cos [A (n +P ) ]j exp [ IC—/A cos (x)], (3)

where P is a quasimomentum for a wave propagating in

the x direction. Because of the conservation of quasi-
momentum, the quasienergy eigenfunctions of the Hamil-
tonian (2) have the form exp(iP)y„where functions ttt,

are periodic in x. Therefore the operator n in U has only
integer eigenvalues corresponding to unperturbed (K=O)
energy levels. The equation for quasienergy eigenfunc-
tion y, has the form Uttt, =exp( —iv) y„ from where the
quantum-dynamical model can be mapped [3,5] in a ID
solid-state model with incommensurate potential (for ir-
rational values of A/2n).

The quasiclassical limit of (3) is obtained when A 0
for Z, K fixed. Since for incommensurate solid-state mod-
els it is known [9] that delocalization can occur, the un-

bounded excitation for model (3) is not a priori excluded.
We carried out a numerical investigation of the model

using the well-known procedure of [2,5]. The different
types of behavior observed are shown in Fig. 2 for the
classical parameter values for which no islands of stabili-
ty were observed.

For the case where K=L, diftusive excitation takes
place [Fig. 2(a)]. For A. & 1 the value of the quantum
diffusion rate Dq =(Ad n) /t5, t is of the same order as the
classical value D, . The probability distribution over the
unperturbed levels, shown in Fig. 3, has a Gaussian form
and so corroborates the diff'usive nature of the excitation
process. However, the fitting of the distribution by a
Gaussian law also allows us to determine the diffusive
and localized components, Wd and Wt, in the ttt function
(Wd+Wt =1). Numerically the value of Wd is deter-
mined as the coeIIicient corresponding to the Gaussian
distribution in n which fits W(n) in the tail and is nor-
malized to unity (see also [1]). Since the values of both
Wd and Wt are of the same order of magnitude (accord-
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FIG. 2. Square width ((An)') for the momentum distribu-

tion n p/A, vs the number of iterations t in classical and quan-

tum cases. (a) K=L =5; the upper curve corresponds to the

classical case, and the lower one to the quantum case with

A =2tt/7. 61803. . . . (b) K=4, L =2; the lower curve corre-

sponds to the classical case, and the upper one to the quantum

case with A =2tt/25. 61803. . . . (c) IC=2, L =4, the solid line

corresponds to the classical case, and the dots to the quantum

case with A =2tt/25. 61803. . . . Initially n=0. In all cases
=0
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FIG. 3. Probability distribution W(n) over unperturbed lev-

els in the quantum case of Fig. 2(a) at t =5000 (dots). The
solid line is the classical Gaussian distribution corresponding to
the diffusion rate of Fig. 2(a) at time t =5000.
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ing to Fig. 3 the value Wd =0.2), this suggests the possi-
bility of a coexistence between the localized and the delo-
calized states.

The partial agreement between quantum and classical
diffusion coefficients extends to values of K=L larger
than 1. For smaller values, the measure of the chaotic re-
gion in the classical model is very small and D, =O. The
value of the classical diffusion rate was computed by
averaging over 1000 trajectories homogeneously distri-
buted on a line with a constant value of the momentum p,
corresponding to the quantum value. For the correspond-
ing quantum case a finite diffusion rate was still observed
and it has been found to be rather independent of the
classical parameter values. For instance, if K =L =0.4,
D~=0.02 for 6=0.06. We think that the reason for
such diffusion is connected with quantum jumps between
different regions of stability separated by exponentially
narrow chaotic layers.

For K & L we always observed a quadratic growth in

time of the square width ((An) ) of the probability distri-
bution over the unperturbed levels. A typical example is
presented in Fig. 2(b). We would like to stress the fact
that, at the same time, the classical motion is completely
chaotic and has diffusive excitation. Therefore, contrary
to previously studied models, quantization here leads to
an excitation which is more effective than the correspond-
ing classical one for a wide range of the parameters. It is
important to underline that the origin of this effect is
different from the well-known quantum resonance in the
kicked rotator [2] since in our case there is no periodicity
of U in the unperturbed level number n and the quadratic
growth takes place for typical values of the parameters.

Our numerical investigations for values of 6=1 and
the ratio K/L=2 have shown that the increase of the
nonlinearity parameter K does not lead to an increase of
the quadratic growth rate, y ~ ((d,n ) )/t . For example,
for l't =2tr/7. 61803 and K/L =2, the value of y remains
approximately constant (y= 3) while the value of K
varies over a wide range from 4 to 48.

We think that the reason for such a fast excitation can
be understood qualitatively in the following way: As is

seen from Fig. 1(b) in the case K & L, invariant curves

appear only in the vertical direction. When such curves
are present, the quadratic growth clearly takes place in

both the classical and quantum cases. As the classical
parameters K and L increase, such invariant curves are
destroyed, but each one is then replaced by a cantorus
which has zero measure in the classical case and leads to
a transition to a diffusive regime (after destruction of all
invariant curves). But, in the quantum case, the finite
value of 6 leads to the existence of eigenfunctions which
are concentrated near this invariant set. Such eigen-
states, in a sense, are "scars," which are under extensive
investigation at the present time (see [10]). But, in our
case, these states are delocalized and since the average
value of sin(x) is constant, they lead to a quadratic
growth of the momentum. As the nonlinear parameter K

increases (for K/L =const & 1), this quadratic growth be-
comes relatively weaker since the rate of growth y

remains approximately constant while the diffusion-rate
growth is proportional to K .

This picture is consistent with the fact that for K & L,
we also observe cases where the classical motion is com-
pletely chaotic but the quantum counterpart leads to a lo-
calization. In this case, since the cantori are horizontal,
they may act as barriers for the diffusion in the quantum
case [5,11,12], finally leading to the localization of the
excitation; this is probably the case presented in Fig.
2(c). According to this interpretation, the cantorus may
become penetrable as 6 decreases and then lead to the
corresponding delocalization. We have indeed observed
such an effect, for example, when K=2, L =4, l't =2tr/
49.61803. In some cases, the quantum delocalization is
still present for K & L and 6 =1.

In conclusion we may say that, in the present work, we
studied a model in which the quantization of chaos does
not localize the excitation but instead leads to both a
more efficient excitation and the existence of delocalized
states. Such an excitation corresponds to an infinite
diffusion rate and can therefore be interpreted as the ex-
istence of "superconductive, " or ballistic, states for the
corresponding solid-state model. These properties may be
of some interest in studying incommensurate potentials in

solid-state physics. We hope that some enlightening con-
tribution from this field may give an explanation for the
diffusive excitation in the symmetric case of map (1).
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Rote added. —It is interesting to notice that the quan-
tum model (2) can be considered as a kicked version of
the Harper model [13]. After we submitted this Letter,
an interesting paper [14] appeared in which diffusive and
quadratic excitations have been observed in the Harper
model. From our viewpoint the important difference be-
tween these two models is that the classical limit of the
kicked Harper model (2) is chaotic (for K,L & 1) while
the motion in the Harper model, in this limit, is integra-
ble.

' Permanent address: Institute of Nuclear Physics, 630090
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