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Rational Mappings, Arborescent Iterations, and the Symmetries of Integrability
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We describe a class of nonlinear birational representations of groups generated by a finite number of
involutions. These groups are symmetries of the Yang-Baxter equations and their higher-dimensional
generalizations. They provide discrete dynamical systems with a variety of behaviors, from chaotic to in-
tegrable, according to the number of invariants of the representation.

PACS numbers: 05.50.+q, 02. 10.+w, 02.20.+b, 05.20.—y

The results we present here have their roots in statisti-
cal mechanics on d-dimensional lattices. They neverthe-
less go beyond this field and reach various domains:
discrete dynamical systems, nonlinear representations of
Coxeter groups, symmetries of the Yang-Baxter equa-
tions, and symmetry groups of phase diagrams, among
others.

These results stand between the two extremes of the
behavior of dynamical systems: integrability, which sig-
nals the existence of remarkable structures, but is excep-
tional, and chaotic behavior which accounts for many sit-
uations, but may reduce to an unsatisfactory taxonomy of
a too large set of models.

We describe classes of infinite discrete groups, contain-
ing and generalizing the notion of iteration. These groups
happen to be symmetries of the equations which nowa-
days define integrability, that is to say the Yang-Baxter
equations and their higher-dimensional generalizations;
see [1-4].

The generators of these groups are noncommuting in-
volutions I],I2, . . . , I, . In our construction, the number r
of involutions is originally 2, 4, . . . , 2 '. These involu-
tions are simply diferent inversions of matrices, ie.
bi rational transformations with integer coe+cients.

If d=2, i.e., r =2, we have two involutions I] =I and
I2=J. The group I they generate is the set of transfor-
mations of the form I'(IJ)", where a=0, 1 and n E Z.
Up to a semidirect product by Z2, this group identifies
with the iterations of the map f=IJ. We get a discrete-
time dynamical system, just as in the study a la Poincare

of dynamical systems [5].
If d & 2, the number of generating involutions in-

creases, and the group I has exponential growth. One
has an arborescent iteration.

We produced images of the orbits of I. Remarkably
enough these orbits sometimes are chaotic and sometimes
lie in algebraic subvarieties of the parameter space. We
may give the equations of these subvarieties by writing
down the algebraic invariants of the transformations.

It is worth noticing that the mappings we construct are
not restricted to the interval. We produce Ã-dimensional
mappings for arbitrary N. These mappings admit natural
multiparameter deformations [2], which nicely exemplify
the breaking of tori ci la Kolmogorov, Arnold, and Moser
[6].

Construction of involutions We descr. i—be diA'erent

construction procedures of inversions of matrices. They
illustrate the variety of possible constructions but are of
course not limitative.

(A) A first construction: Let m be a qxq matrix of
entries m;~. Let I be the ordinary matrix inverse. Let J
be the element by element inverse (m;~ 1/m;~. ). These
two involutions do not commute, and IJ is of infinite or-
der.

It is noticeable that certain patterns of matrices are
preserved by the action of I and J separately, and there-
fore by the whole group I generated by I and J (e.g. ,
symmetric or cyclic matrices). We may thus reduce the
dimension of the space where I and J act. There exist
patterns, defined by equalities between the entries (m;~
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=m(, ( for certain pairs of indices), which are preserved
simultaneously by I and, of course J. We call these pat-
terns admissible. One has to realize their scarcity: There
are, for instance, 187 such patterns for 4X4 matrices,
to be compared with the total number of patterns
(10480142147=10' ). We have performed the exhaus-
tive exploration of the possible patterns up to matrix size
4X4, and partial explorations for higher sizes. We have
found admissible patterns for higher matrix sizes, for ex-
ample, the noncyclic, nonsymmetric 6x6 matrix

Z y Z Z

Z X y Z y Z

Z X Z Z

Z Z X Z

Z y Z y X Z

,zzyzyx,
These matrices form an Abelian algebra, on which two

products are defined: the matrix product (denoted by )
and the product element by element (denoted by *).
There exists a linear mesomorphism C between the two
products:

consequently of the whole group 1. We have a linear
pencil of curves of generic genus 1, with finitely many
curves of genus 0.

(B) A second construction: Let m be a matrix of size
p &p . The entries of m may be written with double in-
dices:

mI/(, i,j,k, l c [1, . . . ,pj .

On such matrices, there is a product law

(M. N)(,(( =g M (((Nk(
aP

and an inverse I for this product, i.e.,

gM J(( (IM).(', ( =b(, b/. (7)
aP

The form of the entries allows for the definition of partial
transpositions t [ and t2.

(t(M)(, ( =M~~(, ((2M)q~(=M(, ~j.

The composition of the two partial transpositions is the
full transposition t and commutes with the inverse I, but
the partial transpositions do not. We may define

J=t]It2.
C(M. N) =C(M) *C(N) . (2)

This isomorphism defines a collineation between the two
inverses:

I =C 'JC. (3)

(In CPq, the Noether theorem [7] proves that every bira-
tional automorphism of the plane can be represented as a
product of quadratic transformations and a projective
transformation, but this is very specific to CP2,. the bira-
tional transformations in CP„,n ) 2, are much more
complicated. )

Beware that C is not unique, and is not offinite order.
However, in the so-called standard scalar Potts [8] limit
(y =z), C is nothing but the Kramers W'annier duality-
involution [9].

We consider the entries of m as homogeneous coordi-
nates in a projective space. The inverses I and J have
a rational action on the inhomogeneous coordinates u

=y/x, v =z/x. I reads

—u —u+2vu~
1+u+2v —u —2uv —

Ll

u +vu —v —v
Ll ~

1+u+2v u 2uv v

(4)

(5)

J being simply u 1/u and v I/v.
The numerical iteration of IJ shows [ll that the succes-

sive images all lie on curves. These algebraic curves have
the equation

(2v +2vu —u —2u —2vu +v u)(u —v ) =const.
(v+u) (1 —u)(1 —v)'

This rational expression is an invariant of I and J, and

We have J = t 2It ~
and J = 1. The two inversions I and J

do not commute. They actually generate an infinite
discrete group.

Remark. —We shall in the sequel use a generalization
of this construction to multi-index matrices of size p"xp
written in the form M~,'~", . . . ~', . There exist d diAerent
partial transpositions t ],t 2, . . . , td with the evident
definition

(10)

We clearly have a product and an inverse I for these
multi-index matrices. We may define 2 " ' new inver-
sions by

where ([a~, . . . , a, ,j a[, +,(. . . , a dj) is a partition of
[I, . . . , dj. These various inverses are related by permu-
tations of rows and columns. Note that the product of all
tq's is the full transposition t and commutes with all the
inverses.

As for the first construction, we are lead to consider
admissible patterns of matrices which are left invariant
by the many inversions. This allows for a reduction of
the number of homogeneous parameters the matrix de-
pends on. An interesting example is given, in the case
d=2, by the R matrix of the Baxter model [10]. The
generic orbits again form in this case a dense set in ellip-
tic curves (in CP3). This resolves the problem of
"Baxterization" of an isolated solution of the Yang
Baxter equations (see the section below on symmetry of
integrability) [3].

Arborescent iterations. —When we have r & 2 involu-
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MJIJ2J3 0 1f l )E2l3J IJ2J3 (i 2)

These constraints amount to saying that the 8 X 8 matrix
is the direct product of the same 4x4 matrix two times.
It is further possible to impose that this matrix is sym-
metric, since such a symmetry is preserved by the partial
transpositions t], t2, t3. Let us introduce the following
notations for the entries of the 4X4 block of the matrix
M:

a dl dz d3

dl bl c3 Cp

d2 c3 b2 c]

tions I ~, I2, . . . ,I„the group I is of course still countable
but gets exponentially big. Indeed elements of the group
are "words" written with the letters It, (k =I, . . . , r)
with the restriction that consecutive letters have to diA'er.

The number of words of a given length grows exponen-
tially with this length, contrary to what happens when
r =2.

The investigation of the orbits of I may be split into
two steps. (I) The simplest is to study the subgroups
generated by two arbitrarily chosen involutions II, ,

and

Ik„in analogy with one-parameter subgroups of a con-
tinuous group, and this is how Fig. 1 was obtained. (2)
The construction of the orbits under the full group may
be approached by a random construction of typical ele-
ments of arbitrarily large length [4].

It is of course useful to produce admissible patterns.
For simplicity we restrict ourselves here to d =3, and give
two admissible patterns which generalize the d=2 pat-
tern of the Baxter model. For both these patterns, p =2,
M is an 8x8 matrix, and the indices take values 4-1.
We define the patterns by restrictions on the entries of
the matrix.

Pattern 1: Let us define M with the restrictions on the
entries

I 1l 2I 3 l 1, l 2, l 3

FIG. 1. The orbit of a generic point under the iteration of II l

in ILP9 (ten homogeneous parameters). We see that the orbit
lies on a two-dimensional surface. There are indeed seven in-

variants common to I and I [.

f(i~, i2, i3) =f( —i ~,
—i 2,

—i3),

g(i l, i2 i 3) =g( —t l, —l2, —t3) .

(IS)

(i6)

Equations (15) and (16) are symmetry conditions reduc-
ing the numbers of homogeneous parameters from 16 to
8. As for the previous model, there exists an invariant of
the action of the whole group 1:

and 3. They form a five-dimensional space. Any ratio of
the five independent polynomials is invariant under all the
four generating involutions. In other words ELP9 is foliat-
ed by five-dimensional algebraic varieties invariant under
r.

Pattern 2: Let us define N by

JVJIjpj3 f(t lrt2&t3)~j~~jI~j3 g(t 1&t2st3)~ J~~ Jp~ Jg

d3 c2 c~ b3

The four rows and columns of this matrix correspond
to the states (+,+,+), (+, —,—), ( —,+, —), and
( —,—,+) of the triplets (il, i2, i3) or (j~,j2,j3). The ma-
trix M can be completed by spin reversal, according to
(11). Note that t l (respectively, t2, t3) simply exchanges
cz with d2 and c3 with d3 (respectively, circular permuta-
tions); I acts as the inversion of this 4&&4 matrix.

Actually, and quite remarkably, there exist four quan-
tities which are invariant by all the four generating invo
lutions, and therefore the whole group I . Indeed consid-
er

f(+, +,+)f(+, —,—)f( —,+, —)f( —,—,+)
g(+, +,+)g(+, —,—)g( —,+, —)g( —,—,+)

For this model, the trajectories under II] are curves in
|t P7.

Symmetry of integrabi lity One intere. —st of the groups
of transformations we described is that they enter the
symmetries of the Yang Baxter equations (a-lso the star-
triangle equations, tetrahedron equations, and the like).
This syrnrnetry accounts for the existence of the so-called
spectral parameter, resolves the problem of the Baxteri-
zation [11],and gives a precious guideline for the solution
of the equations [3].

ab ~+b2b3 —c] —d], c2d2 —c3d3, The Yang-Baxter equation [10] for vertex models on a

and the polynomials obtained by permutations of 1 2 two-dimensional lattice is an algebraic constraint on the
local Boltzmann weights:

R,",",, (1,2)RJ", ",(1,3)R,",J", (2,3) = g RJI,,Il', (2, 3)RtI', J', (1,3)RJ,'j~,'(l, 2) .
Qi, 02, 03 PI.P2.P3
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If we set 2 =tR(2, 3), 8=crt!R(1,3), C =R(1,2) with cr

defined as the exchange (crR)P~ =R~&'t, then the three in-
volutions

Ii g'. A otlA, 8 t]oC C at]8,
KB. A at]C 8 atI8 C t]oA,

K&. A —t]o-8, 8—ot]A, C—otIC,

generate symmetries of the Yang-Baxter equations. It is
easily verified that

(It, l(, )'=(rC, rC, )'=(rC It, )'= I .

We get the affine Coxeter group Aq' described in [3].
This symmetry contains in particular cases the translation
of the spectral parameter, related to the product IJ [1,4].
Such a shift often turns into a continuous translation, as
would a rotation on the circle with irrational rotation
number.

These results extend [4] to higher dirnen-sional avatars
of the Yang-Baxter equations [12,13].

For example, when 8=3 there are four involutions
K] K2 K3 K4 which satisfy various relations, for instance,
(K!K2K3K4) = 1. The K s generate a group which is a
symmetry group of the tetrahedron equations It is als. o
a symmetry group for the three-dimensional vertex model
even if the model does not satisfy the tetrahedron equa-
tion: For example, the partition function has definite au-
tomorphy properties under this group [2, 14]. It provides
an extension to several complex variables functions of
the notion of the fundamental group H! of a Riemann
surface, with, of course, a much more involved covering
structure.

In conclusion, we have constructed a class of mappings
and groups which clearly obey organizing principles. We
believe there exists a classification of our mappings: It
implies a classification of rational involutions of projec-
tive space with integer coefficients, and a description of
the algebraic varieties they preserve.

They should be a good tool in the st.udy of nonlinear
systems in arbitrary dimensions, providing a definite ex-
ample from chaotic to integrable behavior. They clearly
will serve the study of the algebraic structure of inte-
grable systems. (i) The finite-order orbits of our groups
should be a mine of integrable models; see [1-4]. (ii)
The "size" of the symmetry group in three dimensions
should help disprove the existence of a "genuine" integra-
bility in three dimensions [15], leaving room only for non-
trivial dimensional reductions, or finite-order orbits. (iii)

Our symmetry group is a group of automorphisms of the
integrability varieties. This should give precious informa-
tion on these varieties. In particular, one should decide
if, up to Lie-group factors, these varieties can be anything
else than Abelian varieties, or even product of' curves.
(For example, can they be K3 surfaces?) (iv) An in-
teresting point will be to exhibit the action of our symme-
try group on the underlying quantum group for the
Yang-Baxter equations [16,17].

Laboratoire de Physique Theorique et des Hautes En-
ergies is a unite associee au CNRS.
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