Unified Approach to Spherically Symmetric Diffusion

Noam Agmon
Department of Physical Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel

(Received 20 May 1991)

Abstract

The general form of the Green's-function solution for the spherically symmetric Smoluchowski equation serves as a unified starting point for deriving identities. This approach enables one to obtain a nonlinear differential equation for the dependence of the Green's function on the location of the boundary, relations between Green's-function solutions for various boundary conditions, and their asymptotic expansions.

PACS numbers: 82.20.Mj, 02.30.+g

Spherically symmetric diffusion outside a sphere plays an important role in the study of diffusion-influenced reactions, for example, as a model for geminate pair recombination [1]. When a spherically symmetric potential is introduced, one obtains a Smoluchowski equation [2] that cannot, in general, be analytically solved. One can, however, obtain asymptotic solutions such as the long-time behavior of the time-dependent rate coefficient [3]. As an aid to this end, Sibani and Pedersen [4] have derived, using renewal arguments, a Riccati equation for the dependence of the time-dependent rate coefficient on the sphere's radius. This equation has been recently generalized by Agmon and Szabo [5], who have also obtained identities connecting solutions for different boundary conditions. Such identities have previously been derived [6-8] by various methods, such as renewal arguments [9]. The present Letter further generalizes the approach [5] to the Green's-function solution, which depends on a single unknown function. By manipulating this solution and eliminating the unknown function, the most general form of the above-mentioned identities may be obtained.

The spherically symmetric Smoluchowski equation [1,2] for diffusion outside a d-dimensional sphere,

$$
\begin{array}{r}
\frac{\partial \rho\left(r, t \mid r_{0}\right)}{\partial t}=\frac{\partial}{\partial r} D(r) e^{-V(r)} \frac{\partial}{\partial r} e^{V(r)} \rho\left(r, t \mid r_{0}\right) \\
\equiv \mathcal{L}_{r} \rho\left(r, t \mid r_{0}\right), \quad r \geq a \tag{1}
\end{array}
$$

describes the time (t) evolution of the radial probability density, $\rho\left(r, t \mid r_{0}\right) \equiv \gamma_{d} r^{d-1} p\left(r, t \mid r_{0}\right)$, where $p\left(r, t \mid r_{0}\right)$ is the probability density for a particle to be located a distance r from the origin by time t given that it was initially ($t=0$) located at $r_{0} . \quad \gamma_{d} \equiv 2 \pi^{d / 2} \Gamma(d / 2)=1,2 \pi$, and 4π for $d=1,2$, and 3 , respectively. $D(r)>0$ is a diffusion coefficient tending to a constant value at large distances, $D(r) \rightarrow D_{\infty} \quad$ as $r \rightarrow \infty . \quad V(r) \equiv U(r) / k_{B} T-(d-1) \ln r$, where $U(r)$ denotes a spherically symmetric potential of interaction, k_{B} is Boltzmann's constant, and T is the absolute temperature. It is assumed that $U(r) \rightarrow 0$ as $r \rightarrow \infty . \mathcal{L}_{r}$ stands for the Smoluchowski operator in the variable r. The initial condition imposed on Eq. (1) is therefore that of a δ function,

$$
\begin{equation*}
\rho\left(r, 0 \mid r_{0}\right)=\delta\left(r-r_{0}\right) \tag{2}
\end{equation*}
$$

Hence $\rho\left(r, t \mid r_{0}\right)$ is the Green's function for the Smoluchowski equation.
The most general form for the boundary condition at $r=a$ to be considered below is the "radiation" boundary condition [1]

$$
\begin{align*}
R\left(t \mid r_{0}\right) & \left.\equiv D(a) e^{-V(a)} \frac{\partial}{\partial r} e^{V(r)} \rho\left(r, t \mid r_{0}\right)\right|_{r=a} \\
& =\kappa \rho\left(a, t \mid r_{0}\right), \tag{3}
\end{align*}
$$

in which case we [5] denote the solution by $\rho_{\mathrm{rad}}\left(r, t \mid r_{0}\right)$. In the special case that $\kappa=0$, it reduces to the solution for a reflecting boundary condition, $\rho_{\text {ref }}\left(r, t \mid r_{0}\right)$, while for $\kappa=\infty$, Eq. (3) reduces to an absorbing boundary condition, $\rho_{\text {abs }}\left(a, t \mid r_{0}\right)=0$. Whenever the boundary condition is not explicitly noted, the result is understood to be generally valid. In the opposite limit of $r \rightarrow \infty$ the solution vanishes, $\rho\left(r, t \mid r_{0}\right) \rightarrow 0$. In general, $\rho\left(r, t \mid r_{0}\right)$ depends on the two variables r and t, as well as on two parameters, r_{0} and a. The dependence on r_{0} enters through the initial condition, Eq. (2), while the dependence on a is implicit through the boundary condition, Eq. (3). The latter can be stressed by using the notation $\rho\left(r, t \mid r_{0} ; a\right)$ whenever appropriate.

It is convenient to Laplace transform the above equations, defining $\hat{\rho}\left(r, s \mid r_{0}\right) \equiv \int_{0}^{\infty} d t e^{-s t} \rho\left(r, t \mid r_{0}\right)$ for $0 \leq s$ $<\infty$. In Laplace space, the Smoluchowski equation becomes an ordinary differential equation,

$$
\begin{equation*}
s \hat{\rho}\left(r, s \mid r_{0}\right)-\delta\left(r-r_{0}\right)=\mathcal{L}_{r} \hat{\rho}\left(r, s \mid r_{0}\right), \quad r \geq a \tag{4}
\end{equation*}
$$

with boundary conditions transformed accordingly. The inhomogeneous, δ-function term comes from the initial condition, Eq. (2). One may similarly absorb the initial condition into Eq. (1) by adding $\delta(t) \delta\left(r-r_{0}\right)$ to its right-hand side (rhs).

The starting point for all subsequent derivations is the general form of the solution to Eq. (4), as obtained from properties of ordinary differential equations and Green's functions [10]. Assume that $f(r)$ is a solution of the homogeneous part of Eq. (4), i.e., for $r \neq r_{0}$. (This solution depends parametrically on s but not on a.) Then, it is well known [10] that $f(r) I(r ; a)$ is a second, linearly independent solution of the second-order homogeneous
equation, where

$$
I(r ; a) \equiv \int_{a}^{r} d x\left[D(x) e^{V(x)} f(x)^{2}\right]^{-1}
$$

This may be checked by direct differentiation. Furthermore, let $f(r)$ obey the outer boundary condition, namely, $f(r) \rightarrow 0$ as $r \rightarrow \infty$. Then $y_{1}(r) \equiv f(r)$ is the solution in the outer region, $r>r_{0}$. The solution in the inner region, $r<r_{0}$, denoted by $y_{2}(r)$, can always be written as a linear combination of the two above-mentioned solutions. Therefore $y_{2}(r)=f(r)[\alpha(a)+I(r ; a)]$, where $\alpha(a)$ is a constant which will depend on the boundary condition imposed at $r=a$. The solutions y_{1} and y_{2} are again linearly independent since their Wronskian [10], $W\left(y_{1}, y_{2}\right) \equiv y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}$, differs from zero everywhere. Specifically, $W\left(y_{1}, y_{2}\right)=-\left[D\left(r_{0}\right) e^{V\left(r_{0}\right)}\right]^{-1}$. Given $y_{1}(r)$ and $y_{2}(r)$, it is standard technique [10] to obtain the solution of the inhomogeneous equation (4):
$-D\left(r_{0}\right) W\left(y_{1}, y_{2}\right) \hat{\rho}\left(r, s \mid r_{0}\right)=\left\{\begin{array}{l}y_{1}(r) y_{2}\left(r_{0}\right), \text { if } r \geq r_{0}, \\ y_{1}\left(r_{0}\right) y_{2}(r), \text { if } r \leq r_{0} .\end{array}\right.$

Therefore

$$
\begin{align*}
& \hat{\rho}\left(r, s \mid r_{0} ; a\right)=f(r) f\left(r_{0}\right) e^{V\left(r_{0}\right)}\left[\alpha(a)+I\left(r, r_{0} ; a\right)\right] \\
& I\left(r, r_{0} ; a\right) \equiv \int_{a}^{\min \left(r, r_{0}\right)} d x\left[D(x) e^{V(x)} f(x)^{2}\right]^{-1} \tag{5}
\end{align*}
$$

Equation (5) reveals the usual properties of the Green's function, which is continuous at $r=r_{0}$, but whose first derivative is discontinuous there [due to the function $I\left(r, r_{0}\right)$]. Expressing the solution in terms of a generally unknown function $f(r)$ may seem futile [5]: Whenever Eq. (4) admits an analytic solution, so is $f(r)$. The importance of Eq. (5) is in cases where no analytic solutions exist, as it allows the derivation of many useful identities.
First, consider the dependence on the parameters r_{0} and a. Equation (5) implies that the Green's function obeys the symmetry relation

$$
\hat{\rho}\left(r, s \mid r_{0}\right) e^{-V\left(r_{0}\right)}=\hat{\rho}\left(r_{0}, s \mid r\right) e^{-V(r)}
$$

Evidently, this relation holds in the time domain as well, where it is known as detailed balancing. Insertion in Eq. (4) shows that the r_{0} dependence can be described by

$$
\begin{equation*}
s \hat{\rho}\left(r, s \mid r_{0}\right)-\delta\left(r-r_{0}\right)=e^{V\left(r_{0}\right)} \frac{\partial}{\partial r_{0}} D\left(r_{0}\right) e^{-V\left(r_{0}\right)} \frac{\partial}{\partial r_{0}} \hat{\rho}\left(r, s \mid r_{0}\right) \equiv \mathcal{L}_{r_{0}}^{\dagger} \hat{\rho}\left(r, s \mid r_{0}\right), \quad r_{0} \geq a \tag{6}
\end{equation*}
$$

which is the well-known [1] "backward" Kolmogorov equation. $\mathcal{L}_{r_{0}}^{\dagger}$ denotes the adjoint Smoluchowski operator in r_{0}, and the boundary condition transforms accordingly [11,12].

In contrast to the backward equation, little is said in the literature about the dependence on the boundary location a. Using Eq. (5), it is possible to obtain the following nonlinear boundary equation for a reflecting sphere,

$$
\begin{equation*}
\partial \hat{\rho}_{\mathrm{ref}}\left(r, s \mid r_{0} ; a\right) / \partial a=s \hat{\rho}_{\mathrm{ref}}(r, s \mid a ; a) \hat{\rho}_{\mathrm{ref}}\left(a, s \mid r_{0} ; a\right), \tag{7}
\end{equation*}
$$

which is valid for $r>a$. In the time domain, Eq. (7) becomes a convolution relation,

$$
\begin{equation*}
\partial \rho_{\mathrm{ref}}\left(r, t \mid r_{0} ; a\right) / \partial a=\int_{0}^{t} d \tau \rho_{\mathrm{ref}}(r, t-\tau \mid a ; a) \partial \rho_{\mathrm{ref}}\left(a, \tau \mid r_{0} ; a\right) / \partial \tau \tag{8}
\end{equation*}
$$

It attributes the variation in $\rho_{\text {ref }}\left(r, t \mid r_{0}\right)$, caused by a change in the reflective sphere radius, to all those stochastic trajectories which enter the spherical shell between a and $a+d a$ at some intermediate time. The restriction to a reflective sphere is no limitation since, as we shall see below, any solution of interest may be related to the reflective solution.

Boundary equations of the type (7) may be obtained by invariant imbedding techniques [13], for example, through the appropriate Cauchy system. In the unified approach presented here, a straightforward derivation begins by imposing a reflecting boundary condition on Eq. (5). For $\kappa=0$ and $r_{0}>a$, Eq. (3) becomes

$$
\begin{equation*}
0=\left.D(a) e^{-V(a)} \frac{\partial}{\partial r} e^{V(r)} f(r)\left[\alpha_{\mathrm{ref}}(a)+I(r ; a)\right]\right|_{r=a}=\left.\alpha_{\mathrm{ref}}(a) D(a) e^{-V(a)} \frac{\partial}{\partial r} e^{V(r)} f(r)\right|_{r=a}+\left[e^{V(a)} f(a)\right]^{-1} \tag{9}
\end{equation*}
$$

Subsequently, (the left-hand side of) Eq. (9) is differentiated with respect to a, yielding

$$
\begin{equation*}
0=\left.\frac{\partial\left[\alpha_{\mathrm{ref}}(a)+I(r ; a)\right]}{\partial a} D(a) e^{-V(a)} \frac{\partial}{\partial r} e^{V(r)} f(r)\right|_{r=a}+\left.\mathcal{L}_{r}\left\{f(r)\left[\alpha_{\mathrm{ref}}(a)+I(r ; a)\right]\right\}\right|_{r=a} \tag{10}
\end{equation*}
$$

The first term on the rhs is now simplified using (the rhs of) Eq. (9), while for the second term one uses the fact that $f[\alpha+I]$ solves the homogeneous part of Eq. (4) with $I(a ; a)=0$. Subsequently,

$$
\begin{align*}
\frac{\partial\left[\alpha_{\mathrm{ref}}(a)+I\left(r, r_{0} ; a\right)\right]}{\partial a} & =s e^{V(a)} f(a)^{2} \alpha_{\mathrm{ref}}(a)^{2} \\
& =s \alpha_{\mathrm{ref}}(a) \hat{\rho}_{\mathrm{ref}}(a, s \mid a ; a) \tag{11}
\end{align*}
$$

The replacement of $I(r ; a)$ by $I\left(r, r_{0} ; a\right)$ follows the application of a similar procedure to the adjoint equation. Now, on the one hand, differentiation of Eq. (5) with respect to a gives

$$
\begin{equation*}
\frac{\partial \hat{\rho}\left(r, s \mid r_{0} ; a\right)}{\partial a}=\frac{\hat{\rho}\left(r, s \mid r_{0} ; a\right)}{\alpha(a)+I\left(r, r_{0} ; a\right)} \frac{\partial\left[\alpha(a)+I\left(r, r_{0} ; a\right)\right]}{\partial a} . \tag{12}
\end{equation*}
$$

On the other hand, by setting $r_{0}=a$ or $r=a$ in Eq. (5) one finds

$$
\begin{align*}
& \hat{\rho}(r, s \mid a ; a) \hat{\rho}\left(a, s \mid r_{0} ; a\right) \tag{14}\\
&=\frac{\hat{\rho}\left(r, s \mid r_{0} ; a\right)}{\alpha(a)+I\left(r, r_{0} ; a\right)} \hat{\rho}(a, s \mid a ; a) \alpha(a) \tag{13}
\end{align*}
$$

For a reflecting boundary condition, insertion of Eqs. (11) and (13) into Eq. (12) eliminates the unknown function $f(a)$, thus leading to Eq. (7).

To reduce Eq. (7) to the case that the final location is on the reflecting sphere, $r=a$, the chain rule for differentiation is applied, namely,
$\partial \hat{\rho}\left(a, s \mid r_{0} ; a\right) / \partial a$

$$
=\left.\left[\partial \hat{\rho}\left(r, s \mid r_{0} ; a\right) / \partial a+\partial \hat{\rho}\left(r, s \mid r_{0} ; a\right) / \partial r\right]\right|_{r=a}
$$

$$
\begin{equation*}
\left.\frac{\partial \hat{\rho}_{\mathrm{ref}}\left(a, s \mid r_{0} ; a\right)}{\partial r_{0}}\right|_{r_{0}=a}=\left.e^{-V(a)} \frac{\partial e^{V(r)} \hat{\rho}_{\mathrm{ref}}(r, s \mid a ; a)}{\partial r}\right|_{r=a}=\left.\alpha_{\mathrm{ref}}(a) f(a) \frac{\partial e^{V(t)} f(r)}{\partial r}\right|_{r=a}=-D(a)^{-1} . \tag{17}
\end{equation*}
$$

The latter follows from Eq. (5) and (9), using $I\left(a, r_{0} ; a\right)$ $=I(r, a ; a)=0$. Equation (17) implies that the full form of the reflective boundary condition for the Green's function is $R\left(t \mid r_{0}\right)=-\delta(t) \delta\left(r_{0}-a\right)$. Indeed, when the initial location is on the boundary, the derivative cannot vanish at $t=0$.

Starting from Eq. (5), the derivation of identities connecting solutions for various boundary conditions is straightforward. For an absorbing boundary $\rho_{\mathrm{abs}}\left(a, t \mid r_{0}\right)$ $=\rho_{\mathrm{abs}}(r, t \mid a)=0$, so that $\alpha_{\mathrm{abs}}=0$ and Eq. (5) simplifies to $\hat{\rho}_{\text {abs }}\left(r, s \mid r_{0}\right)=f(r) f\left(r_{0}\right) e^{V\left(r_{0}\right)} I\left(r, r_{0} ; a\right)$. It follows from Eqs. (5) and (13) that

$$
\begin{equation*}
\hat{\rho}_{\mathrm{abs}}\left(r, s \mid r_{0}\right)=\hat{\rho}\left(r, s \mid r_{0}\right)-\hat{\rho}(r, s \mid a) \hat{\rho}\left(a, s \mid r_{0}\right) / \hat{\rho}(a, s \mid a) \tag{18}
\end{equation*}
$$

which is most useful for a reflecting boundary condition imposed on the rhs. For the more general radiation boundary condition, Eq. (3), the Laplace-transformed solution may be written as a linear combination of those for reflecting and absorbing boundaries, namely,

$$
\hat{\rho}_{\mathrm{rad}}\left(r, s \mid r_{0}\right)=\beta \hat{\rho}_{\mathrm{ref}}\left(r, s \mid r_{0}\right)+(1-\beta) \hat{\rho}_{\mathrm{abs}}\left(r, s \mid r_{0}\right)
$$

Indeed, by inserting into Eq. (5) one concludes that $\beta=\alpha_{\mathrm{rad}} / \alpha_{\mathrm{ref}}$. By applying the boundary condition, Eq. (3), and using Eqs. (18) and (17) one finds that $\beta=\left[1+\kappa \hat{\rho}_{\text {ref }}(a, s \mid a)\right]^{-1}$. Hence
$\hat{\rho}_{\mathrm{rad}}\left(r, s \mid r_{0}\right)=\hat{\rho}_{\mathrm{ref}}\left(r, s \mid r_{0}\right)-\frac{\kappa \hat{\rho}_{\mathrm{ref}}(r, s \mid a) \hat{\rho}_{\mathrm{ref}}\left(a, s \mid r_{0}\right)}{1+\kappa \hat{\rho}_{\mathrm{ref}}(a, s \mid a)}$.

This result, previously derived by Szabo, Lamm, and Weiss [14], generalizes Eq. (18) to a partially absorbing boundary. The above results can be written in terms of reaction rates, Eq. (3). Use of Eq. (17) in Eqs. (18) and

This gives

$$
\begin{aligned}
e^{-V(a)} \frac{\partial e^{V(a)} \hat{\rho}_{\mathrm{ref}}\left(a, s \mid r_{0} ; a\right)}{\partial a} & \\
& =s \hat{\rho}_{\mathrm{ref}}(a, s \mid a ; a) \hat{\rho}_{\mathrm{ref}}\left(a, s \mid r_{0} ; a\right)
\end{aligned}
$$

Similarly, setting $r_{0}=a$ gives
$\partial \hat{\rho}_{\text {ref }}(r, s \mid a ; a) / \partial a=s \hat{\rho}_{\text {ref }}(r, s \mid a ; a) \hat{\rho}_{\text {ref }}(a, s \mid a ; a)$.
Finally, equating both initial and final distances to a gives

$$
\begin{equation*}
e^{-V(a)} \frac{\partial e^{V(a)} \hat{\rho}_{\mathrm{ref}}(a, s \mid a ; a)}{\partial a}=s \hat{\rho}_{\mathrm{ref}}(a, s \mid a ; a)^{2}-D(a)^{-1} \tag{16}
\end{equation*}
$$

The last term on the rhs is obtained by noting that when either the initial or the final location is on the boundary,
(19) gives

$$
\begin{equation*}
\hat{R}_{\mathrm{abs}}\left(s \mid r_{0}\right)=\hat{\rho}_{\mathrm{ref}}\left(a, s \mid r_{0}\right) / \hat{\rho}_{\mathrm{ref}}(a, s \mid a) \tag{20}
\end{equation*}
$$

which generalizes to d dimensions a relation previously derived by van Kampen [15], and

$$
\begin{equation*}
\hat{R}_{\mathrm{rad}}\left(s \mid r_{0}\right)=\kappa \hat{\rho}_{\mathrm{ref}}\left(a, s \mid r_{0}\right) /\left[1+\kappa \hat{\rho}_{\mathrm{ref}}(a, s \mid a)\right] \tag{21}
\end{equation*}
$$

Since, by Eqs. (17) and (20),

$$
-D(a) \partial \hat{R}_{\mathrm{abs}}\left(s \mid r_{0}\right) /\left.\partial r_{0}\right|_{r_{0}=a}=\hat{\rho}_{\mathrm{ref}}(a, s \mid a)^{-1}
$$

the combination of Eqs. (20) and (21) leads to the relation between radiation and absorbing rates as obtained by Pedersen [7] and Tachiya [8]. It therefore suffices to find a solution for the simplest boundary condition, either reflecting or absorbing.

An important role in diffusion theory [1] is played by the time-dependent rate coefficient $[3,4] k(t)$, which is defined as the reaction rate for an initial equilibrium distribution, $k(t) \equiv \gamma_{d} \int_{a}^{\infty} d r_{0} r_{0}^{d-1} e^{-V\left(r_{0}\right)} R\left(t \mid r_{0}\right)$. Thus $k(t)$ involves differentiation of the Green's function with respect to r and its integration with respect to r_{0}. For an absorbing boundary in Laplace space, $\hat{\rho}_{\text {abs }}\left(r, s \mid r_{0}\right)$ can be eliminated by Eq. (18). Subsequently, one may use identity (17) for the derivative of $\hat{\rho}_{\mathrm{ref}}(r, s \mid a)$ and

$$
\begin{equation*}
\int_{a}^{\infty} d r_{0} e^{-V\left(r_{0}\right)} \hat{\rho}_{\mathrm{ref}}\left(r, s \mid r_{0}\right)=e^{-V(r)} / s \tag{22}
\end{equation*}
$$

for the integral of $\hat{\rho}_{\text {ref }}\left(a, s \mid r_{0}\right)$. This last identity follows by integration of Eq. (6). Therefore

$$
\begin{equation*}
s \hat{k}_{\mathrm{abs}}(s)=\gamma_{d} a^{d-1} e^{-V(a)} / \hat{\rho}_{\mathrm{ref}}(a, s \mid a) \tag{19}
\end{equation*}
$$

Insertion into Eqs. (20) and (21) recasts the relation of radiative and absorptive solutions into a familiar form [5,6], while insertion into Eq. (16) yields the Riccati
equation derived by Sibani and Pedersen [4],

$$
\begin{equation*}
\frac{\partial \hat{k}_{\mathrm{abs}}(s)}{\partial a}=-\gamma_{d} a^{d-1} e^{-V(a)}+\frac{s \hat{k}_{\mathrm{abs}}(s)^{2} e^{V(a)}}{\gamma_{d} a^{d-1} D(a)} \tag{24}
\end{equation*}
$$

which is therefore a special case of Eq. (7).
A practical application for Eq. (7) is in obtaining the long-time asymptotic solution to Eq. (6). This can be found in the case that $D(r) \rightarrow D_{\infty}$ and $V(r) \rightarrow 0$ for $r \rightarrow \infty$, in dimensions d for which the solution for $D=$ const and $V=0$ is known analytically. The form of this solution in three dimensions [16] suggests the expansion

$$
\begin{equation*}
\hat{\rho}_{\mathrm{ref}}\left(r, s \mid r_{0} ; a\right) \sim \sum_{n=0}^{\infty} g_{n}\left(r, r_{0} ; a\right) s^{n / 2}, s \rightarrow 0 \tag{25}
\end{equation*}
$$

The coefficients g_{n} depend on the variables r, r_{0}, and a, but not the Laplace parameter s. By inserting expansion (25) into Eqs. (4), (6), and (7) and using the reflecting boundary condition [$\kappa=0$ in Eq. (3)], one obtains three hierarchies of equations in the above three variables, which may be solved sequentially for the coefficients g_{n}. The constants of integration are subsequently obtained by demanding that the solution reduces to the correct form in the limit of $r \rightarrow \infty$.

In conclusion, a unified approach for spherically symmetric diffusion invokes the general form for the Green's-function solution, Eq. (5), involving one unknown function which is independent of the inner boundary condition and a parameter which is determined by it. Using this approach, it is straightforward to derive some possibly new results [e.g., the boundary equation (7)] and many known identities, previously obtained by a variety of techniques. This eliminates much of the mystery and confusion attached to the subject of diffusion-influenced reactions. A similar approach may prove useful for other second-order differential equations of mathematical physics.

I thank Professor S. Agmon for comments on the manuscript. This work was supported in part by Grant

No. 86-00197 from the U.S.-Israel Binational Science Foundation (BSF), Jerusalem, Israel. The Fritz Haber Research Center is supported by the Minerva Gesellschaft fur die Forschung, Munich, Federal Republic of Germany.
[1] S. A. Rice, in Diffusion-Limited Reactions, Comprehensive Chemical Kinetics Vol. 25, edited by C. H. Bamford, C. F. H. Tipper, and R. G. Compton (Elsevier, Amsterdam, 1985).
[2] M. von Smoluchowski, Z. Phys. Chem. 92, 129 (1917).
[3] U. M. Gösele, Prog. React. Kinet. 13, 63 (1984).
[4] P. Sibani and J. B. Pedersen, Phys. Rev. Lett. 51, 148 (1983).
[5] N. Agmon and A. Szabo, J. Chem. Phys. 92, 5270 (1990).
[6] S. H. Northrup and J. T. Hynes, Chem. Phys. Lett. 54, 244 (1978).
[7] J. B. Pedersen, J. Chem. Phys. 72, 3904 (1980), Eq. (2.19).
[8] M. Tachiya, Radiat. Phys. Chem. 21, 167 (1983), Appendix.
[9] D. R. Cox, Renewal Theory (Methuen, London, 1962).
[10] P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Pt. I, especially Eqs. (5.2.6), (5.2.19), (7.2.49), and (7.4.3).
[11] H. Sano and M. Tachiya, J. Chem. Phys. 71, 1276 (1979).
[12] A. Szabo, K. Schulten, and Z. Schulten, J. Chem. Phys. 72, 4350 (1980).
[13] J. Casti and R. Kalaba, Imbedding Methods in Applied Mathematics (Addison-Wesley, Reading, MA, 1973).
[14] A. Szabo, G. Lamm, and G. H. Weiss, J. Stat. Phys. 34, 225 (1984), Eq. (2.14).
[15] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981), Eq. (VI.10.14).
[16] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959), 2nd ed.

