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The general form of the Green's-function solution for the spherically symmetric Smoluchowski equa-
tion serves as a unified starting point for deriving identities. This approach enables one to obtain a non-
linear differential equation for the dependence of the Green s function on the location of the boundary,
relations between Green s-function solutions for various boundary conditions, and their asymptotic ex-
pansions.

PACS numbers: 82.20.Mj, 02.30.+g

Spherically symmetric diffusion outside a sphere plays
an important role in the study of diffusion-inAuenced re-
actions, for example, as a model for geminate pair recom-
bination [1]. When a spherically symmetric potential is
introduced, one obtains a Smoluchowski equation [2] that
cannot, in general, be analytically solved. One can, how-
ever, obtain asymptotic solutions such as the long-time
behavior of the time-dependent rate coefficient [3]. As an
aid to this end, Sibani and Pedersen [4] have derived,
using renewal arguments, a Riccati equation for the
dependence of the time-dependent rate coefficient on the
sphere's radius. This equation has been recently general-
ized by Agmon and Szabo [5], who have also obtained
identities connecting solutions for different boundary con-
ditions. Such identities have previously been derived
[6-8] by various methods, such as renewal arguments [9].
The present Letter further generalizes the approach [5]
to the Green's-function solution, which depends on a sin-

gle unknown function. By manipulating this solution and
eliminating the unknown function, the most general form
of the above-mentioned identities may be obtained.

The spherically symmetric Smoluchowski equation
[1,2] for diffusion outside a d-dimensional sphere,

Bp(r, t ~r p)

Bt
B — BD(r)e v&r e v&r&p(r t ~rp)
Br Br

=X,p(r, t ~rp), r) a,
describes the time (t) evolution of the radial probability
density, p(r, t ~rp) =—ydr 'p(r, t ~rp), where p(r, t ~rp) is
the probability density for a particle to be located a dis-
tance r from the origin by time t given that it was initially
(t=0) located at rp. yd=2tr I (d/2) =1, 2tr, and 4tt
for d= 1, 2, and 3, respectively. D(r) )0 is a diffusion
coefficient tending to a constant value at large distances,
D(r) D as r ~. V(r)—:U(r)/ktt T —(d —1)lnr,
where U(r) denotes a spherically symmetric potential of
interaction, k~ is Boltzmann's constant, and T is the ab-
solute temperature. It is assumed that U(r) 0 as
r ~. L„stands for the Smoluchowski operator in the
variable r. The initial condition imposed on Eq. (1) is
therefore that of a 6' function,

p(r, O~rp) =6(r —rp) .

Hence p(r, t ~rp) is the Green's function for the Smolu-
chowski equation.

The most general form for the boundary condition at
r=a to be considered below is the "radiation" boundary
condition [1]

R(t ~rp) =D(a)e —" e '"'p(r, t ~rp)r

= tcp(a, t ~rp),

r=a

(3)

sp(r, s~rp) B(r rp) =X„p(r,s ~rp), r )a, (4)

with boundary conditions transformed accordingly. The
inhomogeneous, 6-function term comes from the initial
condition, Eq. (2). One may similarly absorb the initial
condition into Eq. (1) by adding 6(t)8'(r —rp) to its
right-hand side (rhs).

The starting point for all subsequent derivations is the
general form of the solution to Eq. (4), as obtained from
properties of ordinary differential equations and Green's
functions [10]. Assume that f(r) is a solution of the
homogeneous part of Eq. (4), i.e., for rarp. (This solu-
tion depends parametrically on s but not on a.) Then, it
is well known [10] that f(r)1(r;a) is a second, linearly
independent solution of the second-order homogeneous

in which case we [5] denote the solution by p,,d(r, t ~rp).
In the special case that ~=0, it reduces to the solution
for a rellecting boundary condition, p„t(r, t ~rp), while for
tc=ee, Eq. (3) reduces to an absorbing boundary condi-
tion, p, b, (a, t ~rp) =0. Whenever the boundary condition
is not explicitly noted, the result is understood to be gen-
erally valid. In the opposite limit of r ~ the solution
vanishes, p(r, t ~rp) 0. In general, p(r, t ~rp) depends on
the two variables r and t, as well as on two parameters, ro
and a. The dependence on ro enters through the initial
condition, Eq. (2), while the dependence on a is implicit
through the boundary condition, Eq. (3). The latter can
be stressed by using the notation p(r, t ~rp, a) whenever
appropriate.

It is convenient to Laplace transform the above equa-
tions, defining p(r, s ~rp)= fp dte "p(r, t ~rp) —for 0(s

In Laplace space, the Smoluchowski equation be-
comes an ordinary differential equation,
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equation, where

Pr
1(r;a)=— dx [D(x)e "f(x) ]

Therefore

p(r, s Irp, a) =f(r)f(rp)e "' [a(a)+I(r, rp,'a)],
(5)

This may be checked by direct differentiation. Further-
more, let f(r) obey the outer boundary condition, name-
ly, f(r)~0 as r ~. Then y((r)= f(r—) is the solution
in the outer region, r & ro. The solution in the inner re-
gion, r & rp, denoted by yz(r), can always be written as a
linear combination of the two above-mentioned solutions.
Therefore y2(r) =f(r) [a(a) +I(r;a) l, where a(a) is a
constant which will depend on the boundary condition
imposed at r =a. The solutions y ~ and y 2 are again
linearly independent since their Wronskian [10],
W'(y (,yz) —=y (y z

—y 2y I, diA'ers from zero everywhere.
Specifically, W(y), y2) = —[D(rp)e "' ] '. Given y((r)
and y2(r), it is standard technique [10] to obtain the
solution of the inhomogeneous equation (4):

y)(r)y2(ro), if r~ ro,
D(ro) W(y(, y 2)p(r, s lro) = ' („) („) 'f

t min(r, r0)
dx [D(x)e "f(x) ]

Evidently, this relation holds in the time domain as well,
where it is known as detailed balancing. Insertion in Eq.
(4) shows that the r p dependence can be described by

I(r, r p',a):—„~a
Equation (5) reveals the usual properties of the Green's
function, which is continuous at r=ro, but whose first
derivative is discontinuous there [due to the function
I(r, rp)]. Expressing the solution in terms of a generally
unknown function f(r) may seem futile [5]: Whenever
Eq. (4) admits an analytic solution, so is f(r). The im-
portance of Eq. (5) is in cases where no analytic solutions
exist, as it allows the derivation of many useful identities.

First, consider the dependence on the parameters ro
and a. Equation (5) implies that the Green's function
obeys the symmetry relation

p(r, sIro)e ' =p(rp, sIr)e

sp(r, s Irp) —i)(r —rp) =e ' D(rp)e ' p(r, s Irp) =—X,~(r, s Irp), rp ~ a,
ro rp

which is the well-known [ll "backward" Kolmogorov equation. X„,denotes the adjoint Smoluchowski operator in rp,
and the boundary condition transforms accordingly [11,12].

In contrast to the backward equation, little is said in the literature about the dependence on the boundary location a.
Using Eq. (5), it is possible to obtain the following nonlinear boundary equation for a refiecting sphere,

'dp„t(r, s Irp, a)/Ba =sp„((r,s I a; a)p„ (ta, sIrp', a),
which is valid for r & a. In the time domain, Eq. (7) becomes a convolution relation,

(7)

Bp„,r(r, t
I
r p, a)/Ba = dz p„,t(r, t —r I a;a) Bp„r(a, r I r p, a)/Br . (g)

It attributes the variation in p„t(r, t Irp), caused by a change in the reAective sphere radius, to all those stochastic trajec-
tories which enter the spherical shell between a and a+da at some intermediate time. The restriction to a reAective
sphere is no limitation since, as we shall see below, any solution of interest may be related to the rejective solution.

Boundary equations of the type (7) may be obtained by invariant imbedding techniques [13], for example, through
the appropriate Cauchy system. In the unified approach presented here, a straightforward derivation begins by imposing
a reAecting boundary condition on Eq. (5). For x =0 and rp& a, Eq. (3) becomes

O=D(a)e ' e "f(r)[a„,t(a)+I(r;a)] =a„t(a)D(a)e ' e "f(r)—&(a) () V(r) V(a) ~ V(r)

r r

Subsequently, (the left-hand side of) Eq. (9) is differentiated with respect to a, yielding

r=a
+ [e"'f(a)] (9)

8 [a„,t(a) +1(r;a)]0=
a r r=a

+X„[f(r) [a„,r(a ) +I(r;a) ]] I „=,. (10)

The first term on the rhs is now simplified using (the rhs
of) Eq. (9), while for the second term one uses the fact
that f[a+I] solves the homogeneous part of Eq. (4) with
I(a;a) =0. Subsequently,

(1[a„r(a)+I(r, rp, a ) ]

=sa„,t(a)p„( , (Iaa;sa) .

I The replacement of I(r;a) by I(r, rp,.a) follows the appli-
cation of a similar procedure to the adjoint equation.
Now, on the one hand, differentiation of Eq. (5) with
respect to a gives

Bp(r, s Irp, a) p(r, s Irp, a) &[a(a)+1(r,rp,'a)]
Ba a(a)+1(r, rp, a) 8a

(12)
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On the other hand, by setting ro=a or r =a in Eq. (5)
one finds

p(r, s la;a)p(a, s lro, a)

p(a, s Ia;a)a(a) . (13)p(r, s Iro,'a)
a a +I r, ro', a

For a reflecting boundary condition, insertion of Eqs.
(11) and (13) into Eq. (12) eliminates the unknown func-
tion f(a), thus leading to Eq. (7).

To reduce Eq. (7) to the case that the final location is

on the reflecting sphere, r =a, the chain rule for
diAerentiation is applied, namely,

Bp(a, s lro, a)/Ba

This gives

~r, ) Be "p„,r(a, s Iro.,a)
e

a

=sp„,r(a, s la;a)p„r(a, s lro, a) .

Similarly, setting rp =a gives

Bp„,r(r, s Ia;a)/Ba =sp„r(r, s la;a)p„, r(a, s la;a) .

(i4)

(15)

The last term on the rhs is obtained by noting that when
either the initial or the final location is on the boundary,

Finally, equating both initial and final distances to a gives

~ V(a)-—v(a) p"" ' I ' -
( I ) 2

a

(i6)

Bp„r(a,slro.,a) ~r, ) Be ' p„,r(r, sla;a) Be'r')f(r)
Bro Br Br a

= —D(a) (17)

(20)

which generalizes to d dimensions a relation previously
derived by van Kampen [15],and

R,,d(s lro) =i~p«r(a, s lro)/[1+ i~p«r(a, s la)] . (21)

—D(a)BR„b,(s Iro)/Brol. ,. = =p„,r(a, s Ia)
—'

the combination of Eqs. (20) and (21) leads to the rela-
tion between radiation and absorbing rates as obtained by
Pedersen [7] and Tachiya [8]. It therefore suffices to find

a solution for the simplest boundary condition, either
reflecting or absorbing.

An important role in diffusion theory [1] is played by
the time-dependent rate coefficient [3,4] k(t), which is

defined as the reaction rate for an initial equilibrium
distribution, k(t) =—yd f, droro 'e 'R("t lro). Thus
k(t) involves differentiation of the Green s function with

respect to r and its integration with respect to rp. For an
absorbing boundary in Laplace space, p.,b, (r, s lro) can be
eliminated by Eq. (18). Subsequently, one may use iden-

tity (17) for the derivative of p„,r(r, s
I a) and

pab, (r,s lro) =p(r, s lro) p(r, s la)p(a, s Iro)/p(a, s la),

(i8)

which is most useful for a reflecting boundary condition
imposed on the rhs. For the more general radiation
boundary condition, Eq. (3), the Laplace-transformed
solution may be written as a linear combination of those
for reflecting and absorbing boundaries, namely,

p, ,d(r, s lro) =pp„,r(r, s lro)+ (1 p)pabs(r, s Iro)

Indeed, by inserting into Eq. (5) one concludes that
p=a„d/a„, r. By applying the boundary condition, Eq.
(3), and using Eqs. (18) and (17) one finds that
P=[1+xp„r(a,sla)] '. Hence ""'p„r(r,s Iro) =e ""'/s (22)drpe4 a

imp«r(r, s I a)p„r(a, s I ro)
Prad r, s iro Pref r, s Iro I+ ~p„,r(a, s la)

for the integral of p„r(a, s lro). This last identity follows

by integration of Eq. (6). Therefore(i9)

The latter follows from Eq. (5) and (9), using 1(a,ro', a)
=I(r,a;a) =0. Equation (17) implies that the full form (19) gives
of the reflective boundary condition for the Green's func-
tion is R(t lro) = —B(t)b(ro —a). Indeed, when the ini- Rabs(S IrO) Pref(a S IrO)/Pref(a S

I a),
tial location is on the boundary, the derivative cannot
vanish at t =0.

Starting from Eq. (5), the derivation of identities
connecting solutions for various boundary conditions is
straightforward. For an absorbing boundary p, b, (a, t lro).Since, by Eqs. ~17) and &20),=p,, b, (r, t la) =0, so that a. b =0 and Eq. (5) simplifies to
p, b, (r, s lro) =f(r)f(ro)e ' I(r, ro,a). It follows from

VPrp]

Eqs. (5) and (13) that

This result, previously derived by Szabo, Lamm, and
Weiss [14], generalizes Eq. (18) to a partially absorbing
boundary. The above results can be written in terms of
reaction rates, Eq. (3). Use of Eq. (17) in Eqs. (18) and

sk„. b, (s) = yda 'e ' /p„r(a, s la) . (23)

Insertion into Eqs. (20) and (21) recasts the relation of
radiative and absorptive solutions into a familiar form
[5,6], while insertion into Eq. (16) yields the Riccati
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equation derived by Sibani and Pedersen [4],
t)knobs(S)

d, «, &
Sk ebs(S) 'e

ada 8 +
t)a yda" 'D(a)

(24)

which is therefore a speci«1 case of Eq. (7).
A practical application for Eq. (7) is in obtaining the

long-time asymptotic solution to Eq. (6). This can be
found in the case that D(r) D and V(r) 0 for
r ~, in dimensions d for which the solution for
D =const and V=O is known analytically. The form of
this solution in three dimensions [16) suggests the expan-
sion

p„t(r, s ~rp, a) —g g„(r,rp', a)s", s 0.
n=0

(25)

The coefficients g„depend on the variables r, ro, and a,
but not the Laplace parameter s. By inserting expansion
(25) into Eqs. (4), (6), and (7) and using the reflecting
boundary condition [tc=0 in Eq. (3)], one obtains three
hierarchies of equations in the above three variables,
which may be solved sequentially for the coe%cients g„.
The constants of integration are subsequently obtained by
demanding that the solutiion reduces to the correct form
in the limit of r

In conclusion, a unified approach for spherically sym-
metric diff'usion invokes the general form for the
Green's-function solution, Eq. (5), involving one un-
known function which is independent of the inner bound-
ary condition and a parameter which is determined by it.
Using this approach, it is straightforward to derive some
possibly new results [e.g. , the boundary equation (7)] and
many known identities, previously obtained by a variety
of techniques. This eliminates much of the mystery and
confusion attached to the subject of difl'usion-influenced
reactions. A similar approach may prove useful for other
second-order diAerential equations of mathematical phys-
ics.
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