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Exactly Soluble Supersymmetric t-J-Type Model with Long-Range Exchange and Transfer
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The Gutzwiller wave function is shown to be the exact solution of a supersymmetric t-J-type model.
The model realizes a Fermi-liquid state in one dimension with a discontinuity in the momentum distribu-
tion. Analytic results are obtained for spin and charge susceptibilities, and the specific-heat coe%cient
with the help of the Luttinger-liquid theory. In the high-density limit the model exhibits a Mott-
Hubbard gap and reduces to an antiferromagnetic spin chain with long-range exchange solved by Hal-
dane and Shastry.

PACS numbers: 71.30.+h, 05.30.—d, 74.65.+n, 75. 10.Jm

Exactly soluble one-dimensional fermion models such
as the Tomonaga-Luttinger model [1],the Hubbard mod-
el [2,3], and the supersymmetric t-J model [4-7] show
power-law singularities in the momentum distribution.
This feature is in marked contrast to the discontinuity at
the Fermi surface in Fermi liquids. In this Letter we
present an interacting-fermion model that is exactly solu-
ble and shows a discontinuity in the momentum distribu-
tion. This model is the first example that realizes a
Fermi-liquid state with spin —, in one dimension. The
model includes in the high-density limit the antiferromag-
netic Heisenberg chain with long-range exchange which
has been solved by Haldane [8] and Shastry [9]. We
show that the Gutzwiller wave function is the exact solu-
tion of the model. The resultant Fermi-liquid state is
identified as a free Luttinger liquid [1]. With this iden-
tification we obtain analytic results for most fundamental
thermodynamic quantities such as the charge susceptibili-
ty, the spin susceptibility, and the low-temperature spe-
cific heat. The charge susceptibility indicates the pres-
ence of a Mott-Hubbard gap.

The t-J-type Hamiltonian is given by

P=Pg tjgc; c~ +J~(S, Sl —4nnJ) P,
l+J 0

where P is the projection operator to exclude the double
occupation at each site. Other notations are standard
ones. We treat a finite system and impose the periodic
boundary condition. Namely, we work with a ring of
length N in units of the lattice spacing. We choose N
even and require

t;, =J;, =tD(x; —xi)

with D(x; —xi) =(N/tr)sin[tr(x; x~)//N] and t—)0. In
the macroscopic limit —t reduces to the nearest-neighbor
transfer.

The Gutzwiller state ~G) is related to the free Fermi
sea ~F) by ~G) =P~F). Following Ref. [10] we choose
the fully polarized state Nt) of N electrons as the refer-
ence state and represent G) as

(G) = + (bj, [yj) p[;, p[ J )Nt).
fx, yI Ixl ) e IyI

Here [xj denotes the set of coordinates for M down-spin
electrons and [yj denotes that of g holes. Thus we have
N=2M+g. In order to remove the degeneracy we
choose M odd. The amplitude +o([xj,[yj) is given,
apart from a normalization factor, by

inate in [xj. In applying the
~G) we consider the up-spin

pin one T
~ separately. T t

but leaves [xj intact. On the
hange between pairs of x and
A crucial simplification occurs

This follows because Eq. (2)
us after application of Tt the
es zero for the wave function.
e which does not change the
orm Tt canto T[, and prove the

q

(2) Let us rewrite the Hamiltonian in terms of the spin-
boson operator b;r where b; b; =n;/2 —S;, and the hole
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([xj,[yj) =exp —ter gx.+Zyt H D(x. —xp)' H D(yt —y )HD(x- —yt).
, a l, ,

'a&p l&m a, l

This +o([xj, jyj) is a generalization of wave functions
treated by Sutherland [11],who considered in the contin- ~here x, is the first cpprd
uum space both a boson system and a fermion one, but transfer pperatpr
not their mixtures. Under exchange of coordinates, holes part T t
behave as fermions and down-spin electrons behave as cha„ges [yj;n pro([xj [yj)
hard-core bosons which are called sPin bosons hereafter. othe~ hand TJ causes
We note that the hard-core repulsion between holes and
spin bosons leads to antisymmetry of +o([xj,[yj) under s;„ce Tt~G);s st, ll a s,„glet
exchange of x and yt. In this representation the system;s val;d for a„y [yj a„d th
of spin bosons and holes has a total momentum of
—tr(M+Q), which in fact is compensated by that of up
spins constituting the vacuum. singlet state, we can transf

The singlet nature of ~G) appears as [10] e ualit T G) =T ~G).
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operator h; defined by n; =1 —h; /t;. Using the singlet
property described above we obtain

/f
~
G) =P g t ~ (2h; h~ +b; b~ +m; m~

—
2 n; n~ ) ~ G), (3)

t,J

with m; =b; b;. We represent the transfer operator for
holes in Eq. (3) as Tt, and that for spin bosons as Tb. Let
+bG({xj,{yj) denote the coordinate representation of
Tb~G), and 9')o({xj,{yj) that of T), ~G). The ratio 0'bG/

+6 at ({xj,{yj) is given by

N —I

/@ t g nJV j2D (n) 2 g / g (n) /F (n) (4)
n=l a P(&a) I

where z =exp(2tri/N) and

B.'p' = I —[(1 —z")Z.'+(1 —z ")Zp]/(Z. —Z)))', (5)

F(t") =cos (trn/N ) + sin (zn/N )cote,
with Z, =exp(2)rix, /N) and e,t =tr(x, y&)/N. W—e use
Greek indices for spin bosons and Latin ones for holes.
The first term in 8 p and that in F,l" do not have coordi-
nates of particles. With this in mind we expand Eq. (4)
by the use of Eqs. (5) and (6) and classify terms accord-
ing to the number of particles involved. Then we find

that all terms with more than three particles vanish after
summation over n. A similar observation has been made
in Refs. [8] and [9] in the absence of holes.

For 4'po({xj, {yj)/0"o ({xj,{yj) we obtain

N —]

+to/+G =2t Z z D(n) Z HFt IIF)

E n, (n, —3n, +4) 1
—2n, /3

Ã
(8)

By the nature of the method of solution it is hard to ex-
clude the possibility of lower-energy states other than
~G). Nevertheless there is strong evidence in favor of ~G)

being the ground state of the system. First, in the dilute
limit, E given by Eq. (8) tends to that of the free Fermi
sea. Thus if +6 is not the ground state for finite n„a
phase change should occur as the density is increased.
This, however, is unlikely in view of the known properties
of related models such as the Hubbard and supersym-
metric t-J models. Second, in the high-density limit

n, =1, F. agrees with the result of Refs. [8] and [9] with
due account of the —n;n~/4 term in P. In this limit Hal-
dane [8] has confirmed by exact diagonalization up to
twelve sites that +g is indeed the ground state.

The charge susceptibility g, in the macroscopic limit is
derived from Eq. (8) as

a'(E/N)
Bn,

tt't(I n, )—
2

The divergence of g, as n, approaches 1 is consistent with

the formation of the Mott-Hubbard gap, as in the Hub-
bard model [2] and the t-J model [7]. Let us compare g,
with the susceptibility g, in the free model with the
single-particle energy

function ~G) is an eigenstate of P. The eigenvalue E is

given in terms of n, =2M/N by

n=l l m a

Here again terms with more than three particles vanish.
The three-body terms in Eqs. (4) and (7) consist of four

types depending on the number of spin bosons involved.
In the case of three spin bosons the three-body terms
combine to a constant owing to the identity

cote.,cote.,+cote„cote,.+cote,.cote„= —1.
Similar reduction occurs in the case of three holes and

that of two spin bosons and one hole.
In the case of two holes and one spin boson the three-

body terms do not combine to a constant because of
different numerical factors. However, by using the sing-
let property of +p we can transform the residual three-
body term into

g g cote, )cote, W = —Q(Q —1)(Q—2 —3N)1

a lcm 6

+ g sin et~ 'PG .
lwm

The details of the algebra will be reported elsewhere.
We have thus seen that the sum of Eqs. (4) and (7)

reduces to a constant plus two-body terms. The two-body
terms turn out to be just equal to minus the interaction
part in Eq. (3). This means that the Gutzwilier wave

for momentum k. The long range of t;~ makes its Fourier
transform e(k) dependent on the size of the system. We
obtain I/g, =tt t(1 —n, /2)/2. The ratio

g, 1
—n, /2

(0) (9)

is a measure of the many-body eA'ect. Interestingly the
right-hand side of Eq. (9) agrees with the inverse of the
discontinuity in the momentum distribution obtained by
the Gutzwiller approximation for models with infinite
repulsion.

We now show that the exact solution is consistent with
the Luttinger-liquid theory [1]. For this purpose we shift
for each spin o. the momentum distribution in the Slater
determinant of ~G) by trJ /N, with J an even integer.
Let us first consider the case where only the charge-
current excitations are involved: J

~

=J~. Upon applica-
tion of transfer operators in Eq. (3) to the shifted wave

function, terms with more than three particles vanish as
long as (J(~ ~ M+1, and the resultant state is shown to
be an exact solution. We introduce the charge velocity v,
by U, =2/try, which reduces to the Fermi velocity in the
noninteracting case. The increment of energy from that
of Eq. (8) is calculated to be zv, J, /2N, where the charge
current J, is defined [12] by (J~+J~)/J2. This result
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shows that v, agrees with the charge-current velocity.
The agreement leads to identification of the Fermi-liquid
state ~G) as a free Luttinger liquid [1]. Then the ratio of
Eq. (9) also represents the enhancement factor of the
effective mass for the charge current.

We next consider the case J~ =2J~. In this case both
charge and spin excitations are involved. The resultant
wave function is obtained by replacing in Eq. (1) the
momentum —x of each particle by —zr(1+K/N), with
K=J~. Although the state with K&0 is not a singlet,
close inspection shows that the transfer operator T~ has
the same effect as that of T~. Therefore the same
effective Hamiltonian as in Eq. (3) can be used. With
the condition that

~
J

~

—J
~ ~

(2, terms with more than
three particles vanish upon application of transfer opera-
tors in Eq. (3) and the shifted state is shown to be an
eigenstate. The condition for the exact solution is rather
strict in this case. We notice that this is a sufficient con-
dition and suggest that the necessary condition is weaker.

The increment of energy for the case J
~

=2J
~

is calcu-
lated to be K x t(1 —3n, /4)/N. By introducing the spin
current [12] I, =(I l

—I
~
)/J2 and identifying the

coeScient of J, , we obtain the spin-current velocity v, as

v, =mt,

x.+x.y'=
2

(1 n, /2) '—
1 —n,

The many-body effect appears only at O(n, ), in contrast
to g„,g, and the discontinuity (1 —n, ) '~ of the momen-
tum distribution [13] where the effect appears at Q(pg ).
We note that y diverges as n, approaches unity. The ori-
gin of divergence is the divergent density of states for
charge excitations at the edge of the Mott-Hubbard gap
[7]. Note that g, vanishes at exactly n, =1, and we ob-

which is independent of n, . Using the property of the
free Luttinger liquid we can derive the spin susceptibility
g, from i, , : g, =2/zv, . At n, =1 the result is consistent
with that of Refs. [8] and [9] derived from the increment
of the energy against changing the number M of spin bo-
sons. We note that g, is smaller than the noninteracting
one g, ( =g, ). Namely, we have the ratio

g, =g, /g,"'=1 —n, /2.

The reduction of the homogeneous susceptibility is also
present in the supersymmetric t Jmodel -[7] and is due to
the antiferromagnetic correlation.

The results for g, and g, are consistent with corre-
lation-function exponents [13,14] for the Gutzwiller wave
function, where no anomalous dimensions appear for ei-
ther spin or charge. Namely, we have the exponents
K~=K =1 in the notation of Ref. [12]. We can derive
the low-temperature specific heat with the aid of the for-
mula obtained by the conformal field theory [3,7]. The
specific-heat coefticient y normalized by the noninteract-
ing one is given by

tain g, /y =2 as in the half-filled case of the Hubbard
model.

A peculiar feature of the present model is that the
finite-size correction in Eq. (8) contains a nonuniversal
contribution in addition to the universal one related to
v, +v„which is described by the conformal field theory
[3,7]. This peculiarity comes from the size dependence in

e(k). Furthermore, the finite-size correction in Eq. (8)
does not vanish in the dilute limit. This is not a problem
since the exact solution in the form of Eq. (1) is valid
only for odd M, which means that n, has the minimum
2/N. In fact, with n, =2/N the energy is reduced to
2e(k =0), which is indeed exact as can be checked by
solving the two-electron problem.

The reduction to the free fermion state in the dilute
limit suggests a close relation to the supersymmetric t-J
model [7]. In the latter model Yokoyama and Ogata
[15] have observed by a numerical study that the
Gutzwiller wave function is an excellent approximation
not only for the ground-state energy but for structure fac-
tors and the momentum distribution at any density.
However, a discrepancy appears in the exponent for
correlation functions. It has been recognized [8,9] that in
contrast to the Heisenberg model the long-range ex-
change model does not contain marginally irrelevant log-
arithmic corrections and represents the fixed-point model
for the singlet spin liquid. The absence of logarithmic
corrections holds for any density in the present supersym-
metric model as can be seen in the explicit solutions for
the correlation function for the Gutzwiller wave function
[13,14]. In this sense the long-range supersymmetric
model is regarded as a fixed-point model for Fermi
liquids.

With slight modification of parameters in P the
Fermi-liquid fixed point in one dimension should How to-
ward a Luttinger liquid with no discontinuity in the
momentum distribution. The nature of the stable state
depends sensitively on the direction of modification. If,
for example, the parameters are such that the spin-dimer
state is realized [8] in the high-density limit, introduction
of holes may lead to a superconducting state. On the oth-
er hand, with perturbations such as interchain interac-
tions which increase the dimensionality of the system, the
Fermi-liquid fixed point should be greatly stabilized. The
present model seems to be a useful reference model to
study phase diagrams in the parameter space.

In conclusion, we emphasize that the simplicity of the
Gutzwiller wave functions, suitably generalized to de-
scribe excited states as well, gives us a unique opportunity
to study the behavior of the supersymmetric model
without being restricted to the asymptotic regime. It has
been pointed out in the high-density limit that there are
enormous degeneracies in the excitation spectrum [8].
These degeneracies are called supermultiplets and inter-
preted in terms of "free spinons" [8]. In a preliminary
study we have found in the two-electron system, which
represents a dilute limit, that many singlet and triplet ex-
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cited states are degenerate. Thus the present model poses
further intriguing problems, such as whether the super-
multiplet structures are present at any density, and what
is the physical meaning of the degeneracy.

We thank N. Kawakami for useful discussions on Lut-
tinger liquids, and T. Watanabe for helpful comments on
the manuscript.
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