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The Barkhausen eAect was studied in an amorphous alloy. The data exhibit all the attributes of self-
organized critical behavior enumerated by Bak, Tang, and Wiesenfeld: The distribution of lifetimes and
areas of discrete Barkhausen pulses follow power-law distributions, which have been modified to account
for finite-size eAects as suggested by KadanoA; Nagel, Wu, and Zhou. The directly measured power
spectral density has the form of flicker noise, with exponent and form consistent with those to be expect-
ed from the measured distribution of pulse areas and lifetimes in the light of the work of Jensen,
Christensen, and Fogedby.

PACS numbers: 75.60.Ej

The theory of self-organized criticality (SOC) intro-
duced by Bak, Tang, and Wiesenfeld [1] (BTW) provides
a description of the dynamics of spatially extended dissi-
pative systems. The principal conclusion of BTW is that
dissipative dynamical systems tend to organize themselves
into a critical state where chain reactions of aII sizes in

time and space propagate through the system.
The absence of characteristic length and time scales in

the self-organized critical state of large dissipative dy-
namical systems has important consequences: fractal
structure and a "1/f" noise power spectral density.
Thus, SOC provides a unified, coherent explanation for
the routine observation of 1/f noise and fractal structure
in nature. A collateral consequence of SOC is power-law
dependences of numbers of occurrences on energies re-
leased, chain-reaction lifetimes, and cluster sizes.

A subsequent paper by Jensen, Christen sen, and
Fogedby [2] (3CF) clarified the underlying ideas in BTW
and made explicit the important connection between the
power-law dependences and the power spectral densities
suggested by BTW. KadanoA; Nagel, Wu, and Zhou [3]
extended the theory to apply to SOC phenomena occur-
ring in systems of (spatially) finite extent.

SOC has been the focus of many recent investigations.
For example, computer simulations and laboratory exper-
iments on sandpile dynamics [4], coarsening of cellular
magnetic domain patterns in garnet films [5], and models
of domain pattern development on magnetic tape [6]
show "fingerprints" of SOC. The most spectacular exam-
ple of the power-law characteristic of SOC is the
Gutenberg-Richter law for the distribution of earthquake
magnitudes [7].

The physics of the Barkhausen effect make it a good
candidate for description in terms of self-organized criti-
cality. The magnetic characteristics of a ferromagnet are
determined by its magnetic domain distribution and the
response of these domains to applied magnetic fields. For
small fields, the kinetic barriers permit only small, rever-
sible, domain-wall changes and the system remains mag-
netically elastic. As the applied field increases and
approaches the magnitude of the coercive force, the

specimen magnetization increases very rapidly and the
response is characterized by large and irreversible
domain-wall jumps along with magnetization rotations
within domains. At saturation, the entire specimen is
magnetized in the direction of the applied field. The in-
termittent changes in magnetization that characterize the
Barkhausen effect are detected as voltage pulses in a
pickup coil near the specimen. The stochastic nature of
the domain responses arises from the complicated charac-
ter of local fields, internal stresses, and bulk and surface
defects. Barkhausen rearrangements tend to occur as
clusters of domain-wall jumps comprising a chain reac-
tion initiating at a single domain. Thus, many charac-
teristic features of the vertical portion of a magnetic hys-
teresis loop are similar to those seen in model simulations
of the self-organized critical state.

Support for this description may be found in the
Barkhausen-effect literature. The coarsening of cellular
magnetic domains in garnet films [5], which has been in-
terpreted in terms of SOC, can be viewed as a special
case of more general Barkhausen phenomena. Further-
more, spectrum analyses of Barkhausen noise generally
show 1/f dependence that is thought to be a key indicator
of SOC. (Various alternative explanations [8] for this
behavior have been presented. ) The present study is
directed at examining the fingerprints of SOC in the
Barkhausen effect in a ferromagnetic metallic glass and
tests whether a consistent description of the phenomena is
possible in the light of Refs. [1-3].

Ferromagnetic amorphous alloys are well suited to a
search for SOC in Barkhausen noise: The high resistivity
of amorphous phases significantly lowers eddy-current
damping of domain-wall motion. Hysteresis loops are
rectangular, so that Barkhausen noise originates in re-
gions of essentially constant, high permeability. Further-
more, their coercive force is small (=0.1 Oe), so that
samples may be cycled through the hysteresis loop with
small external fields.

The particular alloy selected for study was Metglas
2605S-2 ribbon supplied by Allied-Signal, which has the
additional advantage that its domain structures have been
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FIG. 1. Typical Barkhausen pulses observed in a 5-mm-wide
as-cast ribbon of Metglas 2605S-2. There are three relatively
large events comprised of clusters of pulses which are well

separated by many smaller events. The small pulses can be
di%cult to distinguish from the background. Time units are
milliseconds.

described by Livingston and Morris [9]. The domains are
distributed as a fine network of complex patterns in un-
magnetized specimens in the as-cast state, while the
domains can be large (of the order of sample dimensions)
following annealing.

Barkhausen data were obtained from as-cast and an-
nealed samples. The magnetic annealing involved heating
to 400'C and immediately cooling at rates of 25'C/min
in a field of 120 Oe. Sample widths were 5 mm for as-
cast specimens and 1 mm for annealed samples; lengths
ranged from 2 to 4 cm; and the thickness was nominally
25 pm but varied by 30%, due to nonuniformities in the
casting process. Narrower specimens were employed to
compensate for the smaller amplitude of Barkhausen
pulses, which is a consequence of permeability and eddy-
current-damping eA'ects in magnetically annealed alloys.

A 300-turn pickup coil was wrapped closely around the
central region of the ribbons. A Pacific Instruments
preamplifier was used with a factor-of-1000 amplifica-
tion. The driving field for the as-cast specimen was pro-
vided by a rotating permanent magnet in the proximity of
the specimen. For the annealed case, the specimen and
its pickup coil were placed inside an air-core solenoid
with the long axis of the specimen aligned parallel to the
alternating field. There was no detectable diA'erence in
pulse trains with the two methods. The field was varied
slowly (1 Oe/s) to maintain separation of individual
Barkhausen events. Trains of Barkhausen pulses were
recorded in a random fashion on a Nicolet digital storage
scope from which the time duration and integrated areas
of individual events were obtained.

Barkhausen noise pulses, typical of those obtained in
the present study, are shown in Fig. 1. The pulses are
generally comprised of a chain of individual events mani-
fested as multiple peaks within a pulse. The observed
pulse shapes diA'er from the rectangular forms assumed in
the JCF analysis; however, the associated single-pulse au-
tocorrelation functions may be reasonably approximated

by the triangular JCF autocorrelation function shape.
There is clear separation of the major pulses. Pulse dura-
tions and areas were obtained from random selections of
typically 5-ms trains of such pulses; direct measures of
the power spectral density were obtained from typically
40-ms trains of such pulses.

Large errors are inherent in the measurement of the
distribution of lifetimes for low-intensity, short-duration
pulses, since the large number of small pulses eventually
blend into a low-level background noise. Thus, pulses
having lifetimes T less than 50 ps were not included in
the present analysis. Employing this criterion, a max-
imum of 2763 (1324) pulses were selected for analysis in
the as-cast (magnetically annealed) samples. The data
were organized into 20-bin linearly spaced histograms.
We varied the minimum T between 50 and 90 ps in order
to provide an estimate of the uncertainties in the deduced
fitting parameters. The occupation of the bin centered at
T is denoted N(T). The intrinsic distribution of lifetimes
P(T) in the Barkhausen noise is assumed to be propor-
tional to the measured N(T).

Employing the Nelder-Mead downhill simplex algo-
rithm [10] to minimize the square deviations in N(T),
the data were fitted by the form

P(T) a: T'exp( —T/Tp), N(T) ~P(T),
where a and To are constants. As the minimum T was
varied between 50 and 90 ps, the fit parameter a varied
between —1.83 and —2.61 (—1.98 and —2.60) and To
varied between 351 and 1274 ps (420 and 1074 ps) in the
as-cast (annealed) samples. (For a few values of the
minimum T, best fits were pure power-law forms with
a =3.0; these values were not included above or in the
determinations of mean values, etc. ) The parameters
were strongly correlated (larger magnitude of a occurring
with larger To) and a = —2.26+ 0.35 ( —2.37+'0.30),
(Tp)—:exp[mean[in(TO)] ] =844 ps (730 ps) in as-cast
(annealed) samples. A typical plot of N(T) vs T and the
fit curve are shown in Fig. 2.

The form in Eq. (1) is compatible with the JCF
analysis. A physical interpretation for the exponential
term with constant To can be found in the finite-size scal-
ing discussion of Kadanoff, Nagel, Wu, and Zhou [3].
The parameter To, which is of the order of the maximum
pulse length observed for a given specimen, may be inter-
preted in terms of the size-eA'ect SOC model. The agree-
ment of the parameters in the as-cast and narrower an-
nealed specimens indicates that the size eAect is deter-
mined by defect distributions rather than by macroscopic
physical boundaries as in sandpile experiments [4] and
simulations [1,3].

In order to compute the distribution of weighted life-
times, G(T), as defined by JCF, it is necessary to de-
termine the joint probability of pulses of lifetime T and
area A, P(A, T), which can be expanded in the form
P(A, T) =P(T)P(A

~
T), where P(A ~T) is the condition-
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FIG. 3. Log-log plot of 125 samplings of pulse area A (in

Vs) vs pulse duration T (in ps) in as-cast ribbon. The straight
line is a least-squares fit to the data.FIG. 2. Plot of measured distribution of Barkhausen pulse

lifetimes T for T & 59 ps in as-cast ribbon. The curve is the re-
sult of least-squares fitting of the data by Eq. (1); the fitting pa-
rameters are a = —2.36 and TO=611 ps. used to precisely determine the conditional probability

P(A l T); however, to compute the parameters in the JCF
expression for G (T), we take P(A l T) = 6(A —A i T )
with g=1.45 (1.34) for the as-cast (annealed) case from
least-squares fitting by

al probability for a pulse of lifetime T to have area A.
Figure 3 is a log-log plot of pulse area A versus lifetime T
for a "random" selection of pulses of various lifetimes for
the as-cast sample. Similar plots were obtained for A (T) cx: T'. (2)
annealed specimens. In principle, such data could be The distribution of weighted lifetimes G(T), as defined

by JCF, is then determined as follows:

G(T) = dA P(A, T) [A/T]'

(3)

l S(f), obtained by Fourier transformation of the auto-
correlation function (Nyquist theorem) determined
directly (from the digitized output) from a train of about
40 ms, versus frequency f for an annealed sample. The
jagged curve includes every tenth point of ten-point-
running averaged data. The data are averaged to smooth
out the large fluctuations that characterize discrete
numeric Fourier transforms of such data.

Least-squares fitting of the data in Fig. 4 by the form
in Eq. (5) for f & 2 kHz yields E =1.244. The data in

Fig. 4 become frequency independent below about 1000
Hz; similar data were obtained for an as-cast specimen.
Results for fifteen least-squares fits for minimum f rang-
ing from 1 to 20 kHz yielded E =1.11+0.05 (1.26
~ 0.07) for as-cast (annealed) specimens.

Some specimens exhibited several large pulses which
were closely related to the magnitude of the external field
rather than randomly distributed as expected in SOC.
Examination of domain-wall motion in these specimens
using the Bitter powder method with a ferrofIuid showed
corresponding repetitive domain jumps adjacent to cut
edges. We believe that these pulses are produced by the
breaking free of strongly pinned domains and are not
representative of the bulk of domain jumps.

(4)G(T) a: T'exp( —T/Tp),

can then be evaluated, yielding a =2(g —1)+a= —1.59
(—1.46) for the as-cast (annealed) case.

According to the JCF analysis, the parameters a and
Tp in G(T) determine the form of the power spectral
density:

S(f) rx: (1/f ) for f& 1/T p, (Sa)

where

3+a for a & —1,
2 for a~ —1,

and

(Sb)S(f) =const for f (1/Tp.
Hence, the JCF analysis yields a 1/f noise spectrum,
modified by finite-size effects [3], with E =1.41 (1.54),
with a transition to an f-independent form below 1185
Hz (1370 Hz) for the as-cast (annealed) samples.

We can also determine S(f) directly from autocorrela-
tion functions measured for trains of Barkhausen pulses.
Figure 4 is a log-log plot of the power spectral density

=P(T) dAP(AlT)[A/T] rxP(T)T ' rx1V(T)T ' ~ T ' +'exp( —T/Tp) .
4 p

The parameters a and Tp in the JCF expression,
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FIG. 4. Log-log plot of every tenth value of the power spec-
tral density (in V'-s-') averaged over ten values (obtained via

discrete Fourier transform) vs frequency (in Hz) of a 40-ms
train in magnetically annealed ribbon. The straight line, which
is least-squares fit for f) 2 kHz, has a slope of —1.244.

The Barkhausen eA'ect in magnetically annealed and
as-cast specimens of Metglas 2605S-2 ribbon exhibits all
the attributes of SOC behavior enumerated by Bak,
Tang, and Wiesenfeld [I]: The weighted distribution of
discrete Barkhausen pulse lifetimes follows a power-law
distribution, modified to account for finite-size eff'ects as
suggested by KadanoA', Nagel, Wu, and Zhou [3]. The
directly measured power spectral density has the form of

flicker noise, with exponent and form consistent with
those to be expected from the weighted distribution of
pulse lifetimes in light of the work of Jensen, Christensen,
and Fogedby [2].
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