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Observation of Quantum Confinement by Strain Gradients
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We have created one-dimensional quantum wells (quantum wires) by laterally straining a GaAs quan-
tum well with patterned carbon stressors 180 nm in width. We find four well-resolved one-dimensional
subbands in the excitation spectra, whose constant spacing of 2.4 meV confirms quantitatively that there
is quantum confinement in the parabolic well predicted by continuum elasticity theory. The lateral

width of the electron ground state is 35 nm.

PACS numbers: 78.65.Fa, 73.20.Dx

The ability to achieve precise, controlled lateral con-
finement is the key to the experimental study of a variety
of interesting predictions concerning single-particle exci-
tations and collective phenomena in quantum wires and
dots [1-4], and is a goal that has been sought by various
techniques [5-10]. Strain gradients have been used to
accelerate excitons within a semiconductor [11], and to
confine electron-hole droplets [12]. We have recently
demonstrated that excitons can be confined to quasi-one-
dimensional regions by strain patterning of a two-
dimensional quantum well [13,14].

We report here the first observation of quantum-wire
subbands produced by strain gradients. We use a pat-
terned carbon stressor to generate strain gradients that
confine excitons laterally within a GaAs-AlGaAs quan-
tum well, and resolve four quantum-wire subbands, with
uniform 2.4-meV splitting, in excitation spectra. The
magnitude and uniformity of the observed splitting are in
good agreement with the parabolic potential well for elec-
trons calculated using continuum elasticity theory. The
lateral width of the electron ground-state wave function is
35 nm. In addition, the observed subband polarization
dependence is consistent with a simple model for the
electron-hole wave-function overlap.

Details of the fabrication of the strain-confining struc-
tures have been discussed elsewhere [15]. Briefly, we use
rf plasma deposition employing butane as the carbon-
containing gas to put down a 100-nm-thick, uniform layer
of amorphous hydrogenated carbon (q-C:H) onto a
quantum-well sample. In this type of deposition, the re-
sulting stress in the carbon film is produced by bonding
defects created by the impact of high-energy ions during
growth of the film, and varies in magnitude and sign with
the deposition conditions [16,17]. Until the carbon layer
is patterned and etched, the semiconductor is unde-
formed, except for a slight but measurable bowing. Upon
etching, the carbon wires expand, and in their partial re-
laxation they locally deform the underlying quantum
well.

Under the conditions used here, the stress in the carbon
film is biaxially compressive and of approximate magni-
tude 500 MPa. The quantum-well sample was grown by
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molecular-beam epitaxy in the following sequence: 500
nm of GaAs, a 200-nm lower barrier layer consisting of
160 nm of Al 3Gag 7As followed by a twenty-layer super-
lattice of 1.4 nm of GaAs and 0.6 nm of AlAs, inserted to
smooth the lower interface and to trap any impurities
from entering the quantum well, the 12-nm GaAs quan-
tum well, a 20-nm barrier of Aly3Gag7As, and a 30-nm
GaAs cap layer. The carbon layer was patterned and
etched to form 40-um square arrays of stressor wires of
180-nm width on 600-nm centers. The region of max-
imum volume dilation in the well occurs under the center
of the wire, and compressively stressed shoulders appear
at the edges of the wire, as shown in Fig. 1(a) in the cal-
culated contour plot. At the center, the strain-induced
band-gap shrinkage forms the exciton potential well. The
calculated strain tensor in the plane of the center of the
quantum well is shown in Fig. 1(b).

Luminescence and excitation spectra for a sample tem-
perature of 10 K are shown in Fig. 2 both for an unpat-
terned region of the sample and for an adjacent array of
180-nm-wide wires. The luminescence spectrum of the
wire-patterned region exhibits a redshift of 22 meV with
respect to that of the unpatterned region. This redshift is
a direct measure of the depth of the exciton potential
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FIG. 1. (a) Cross section, to scale, of a wire-patterned region
of the sample, showing the amorphous carbon stressor and the
underlying 12-nm GaAs well. A contour plot of the volume di-
lation is superimposed. The potential well for excitons lies un-
der the center of the carbon wire. (b) Nonzero components of
the strain tensor in the plane of the quantum well, calculated by
continuum elasticity theory as described in the text.
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FIG. 2. Photoluminescence and excitation spectra of two re-
gions of the quantum well. The horizontal dashed lines indicate
zeros. (a) Unpatterned region, with a heavy-hole exciton peak
of 1.5-meV linewidth and a Stokes shift of 0.2 meV; (b) adja-
cent region, patterned by an array of 180-nm-wide carbon wires
on 600-nm centers. The portion of the excitation spectrum
below 1.543 eV arises from absorption within the strain-induced
wire. The lower of the two peaks associated with wire-confined
excitons is Stokes shifted by 0.8 meV from the luminescence
peak, and shows splitting into quantum-wire subbands. The two
excitation spectra are shown on the same vertical scale.
Luminescence peaks from the GaAs substrate are labeled S.

well. In the excitation spectrum of the unpatterned re-
gion of the well, the heavy-hole peak is 1.5 meV in width,
and has a small Stokes shift of 0.2 meV. The excitation
spectrum of the patterned region is shown on the same
vertical scale. At energies above 1.543 eV this spectrum
shows light- and heavy-hole exciton peaks arising from
absorption in the regions of the well between the wires.
These peaks are split, broadened, and blueshifted by the
laterally modulated compressive stress generated between
the wires (see Fig. 1). This interpretation is confirmed by
the dependence of the relative intensities of these peaks
on the spacing of the wires, not shown here. Excitons
created between the wires are within a diffusion length of
the lateral potential wells, and consequently are trapped
and recombine within the wirelike potential wells. The
longer-wavelength portion of the excitation spectrum
shows two main exciton peaks arising from the redshifted
band gap in the wirelike lateral potential wells. These
two main peaks are associated with the two valence sub-
band edges. The lower-energy peak is Stokes shifted
from the luminescence peak by 0.8 meV. This larger
Stokes shift is presumably a result of inhomogeneous

broadening of the exciton peak by wire-width fluctua-
tions. This lowest-energy wire-confined exciton peak
shows a structure arising from the strain-induced lateral
confinement, seen in closer detail in the polarized excita-
tion spectra of Fig. 3. Four quantum-wire subbands, with
uniform spacings of 2.4 £0.2 meV, are resolved in both
polarizations. Subband structure is not resolved for the
higher-lying exciton peak, perhaps as a result of greater
inhomogeneous broadening for this exciton.

In order to calculate the strain-induced lateral poten-
tial wells for electrons and holes in this structure, we first
calculate the strain tensor in the plane of the well [Fig.
1(b)]. Because the characteristic dimensions are large
compared to atomic spacing, continuum elasticity theory
applies. We use here, as previously, a standard finite-
element approach [15,18]. The anisotropic elastic coeffi-
cients of GaAs are used throughout the semiconductor
structure [19]. A Young’s modulus of 3.59%107 MPa
and a Poisson ratio of 0.3 are used for the isotropic car-
bon layer [16].

Application of the strain Hamiltonian [19-24] yields
the strain modulation of the band edges shown in Fig. 4.
The s-like conduction-band edge is sensitive only to the
hydrostatic, or volume, dilation. The p-like valence-band
edges are strongly modulated and mixed by the shear-
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FIG. 3. (a),(b) Polarized excitation spectra of the quantum-
wire exciton peaks. The two main peaks are labeled LH and
HH, although the two valence subband edges are strongly
mixed by the anisotropic strain. Four quantum-wire subbands,
evenly spaced by 2.4 0.2 meV, are clearly resolved in the HH
transitions, for both polarizations. The intensity scales of the
two spectra are the same.
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FIG. 4. Calculated lateral variation of the conduction- and
valence-band edges. The four lowest quantum-wire subbands of
the nearly parabolic confinement potential are shown. The cal-
culated subband spacing of 2.6 meV is in good agreement with
the data of Fig. 3. Note that both electrons and heavy holes are
confined to the region under the wire.

strain components. Because the wire axis and the normal
to the quantum well are oriented along [100] crystallo-
graphic directions, piezoelectric fields along the y axis are
zero by symmetry, and so do not affect the confinement
potential [25]. We have scaled the strain tensor of Fig.
1(b) to obtain agreement with the observed redshift of
the band gap. This scaling is in agreement with a bowing
measurement of the strain produced by the planar carbon
layer [26]. We obtain at the center of the wire a nearly
parabolic potential well for electrons of 18-meV depth,
relative to the unstrained band edge, with potential bar-
riers located near the edges of the stressors. From the
calculated curvature and use of an electron mass of
0.067mo we calculate a subband splitting of 2.6 meV.
We find a smaller, wider potential well of approximately
5 meV for the highest-lying hole band edge, with a curva-
ture at the wire center that is an order of magnitude
smaller than that of the electron. We emphasize that this
formation of the hole potential well at the center of the
structure is not a general result of strain patterning [23].
In considering the lateral confinement of the exciton,
we note the analogy to the case of quantum-well systems
with small valence-band offsets, as is found to occur for
certain II-VI material systems [27]. With an exciton
binding energy of 7.5 meV for the unstrained well and an
in-plane exciton radius of 13 nm [28,29], this is a situa-
tion in which the electron is confined laterally by the
strain-induced potential well, and the hole is confined la-
terally by its Coulomb attraction to the electron. A very
weak dependence of the exciton binding energy on the
well width is found in the quantum-well case, and may be
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assumed here as well [29]. Thus, the exciton subband
splitting that we observe is determined by the electron
confinement. Our calculated energy-level splitting of 2.6
meV is in very good agreement with our observed split-
ting of 2.4+0.2 meV. The lateral width of the ground-
state electron wave function, given by the full width at
half maximum of the probability density, is 35 nm. We
emphasize that this lateral electron confinement is
achieved with a relatively wide (180 nm) carbon wire and
a relatively small electron confinement potential of 18
meV. We further note that since the energy-level separa-
tion for the parabolic lateral well is proportional to the
square root of the curvature of this well, we expect for
larger wires that the peak splittings should scale as the
inverse of the wire width and as the square root of the
depth of the lateral potential well. For 380-nm-wide
stressor wires, we observe 1.5-meV peak splittings in
luminescence and excitation spectra. These larger wires
produce, as expected [23], a somewhat deeper lateral po-
tential well than do the smaller wires (33-meV redshift in
luminescence, rather than 22 meV). Thus, we find that
the experimentally observed energy-level separations vary
as expected with the size of the wire.

We now focus on the observed polarization dependence
of the wire-confined exciton absorption of Fig. 3. The en-
tire portion of the spectrum associated with transitions
from the heavy-hole (HH) subband is approximately 25%
stronger in absorption for polarization parallel to the wire
axis than for the perpendicular polarization. The light-
hole (LH) peak oscillator strength is approximately equal
to that of the HH peak for polarization perpendicular to
the wire axis, and approximately 40% of that of the HH
peak for the parallel polarization. As shown in Fig. 1, the
shear strain at the center of the wire is spatially quite
uniform over an exciton diameter. The polarization an-
isotropy to be expected here for the various subbands ob-
served is thus a particularly simple case, determined by
the heavy- and light-hole mixing by the uniform uniaxial
strain at the center of the wire [30]. Thus, in contrast to
the case in which lateral confinement of the hole deter-
mines hole subband mixing [31], we expect, and indeed,
within our experimental uncertainty, observe in Fig. 3,
that the polarization anisotropy is independent of sub-
band index.

In considering calculation of the relative oscillator
strengths of the quantum-wire subbands, we note that ac-
curate calculation requires inclusion of finite-k terms in
the exciton wave function [32-34]. However, in light of
the result that inclusion of such terms only qualitatively
explains the observed oscillator strengths in the much
more extensively studied case of quantum-well subbands
[34], an accurate calculation for the present case would
be extremely complex, and we leave it to future work.

In summary, we have achieved lateral quantum con-
finement of excitons with strain gradients. Using carbon
stressors, we have produced lateral, parabolic potential
wells that confine the electron ground state to a wire of
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effective width 35 nm. The spacing of 2.4 meV for the
four resolved subbands agrees well with our calculated
value of 2.6 meV based upon continuum elasticity theory,
and the observed polarization dependence of the oscillator
strengths is consistent with a simple model incorporating
strain-induced valence-band mixing. Strain patterning
has certain important advantages, specifically the flexibil-
ity in patterning of potential wells, the lack of free sur-
faces for carriers to interact with, and the absence of con-
straints imposed by considerations of crystal growth.
These advantages make possible a variety of fundamental
experiments concerning optical interactions with single-
particle and collective excitations in quantum wires and
dots.
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