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Theory of Quantum Conduction of Supercurrent through a Constriction
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The dc Josephson current through a constriction in a two-dimensional superconductor-semiconductor-
superconductor junction is calculated. It is shown that when the Fermi wavelength is comparable with
the width of the constriction, the critical current shows a steplike variation as a function of the width of
the constriction; this is reminiscent of the quantization of the normal-state conductance of point contacts
in a two-dimensional electron gas.
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The hybrid Josephson field-eAect transistor or super-
conducting transistor is one of the most promising candi-
dates for three-terminal superconducting devices [1]. Its
operation depends on the proximity coupling of two su-
perconducting electrodes by the transport of Cooper pairs
through a normal inversion layer or accumulation layer in
a semiconductor. Several groups have realized prototypes
and confirmed the switching of supercurrent by the field
eA'ect [2-4]. Most prototypes realized up to now are dir-
ty systems such that the motion of Cooper pairs is
diA'usive due to impurity scatterings [5]. In the near fu-
ture, however, with the progress in the techniques of mi-
crofabrication, it is likely that high-mobility supercon-
ducting transistors will be possible. These will provide
the first examples of superconducting mesoscopic systems,
where the phase coherence of not only the Cooper pairs
but also of any pair of electrons will be maintained
throughout the system. This additional phase coherence
of ordinary electron pairs may introduce new features in
the conduction of the supercurrent, and it is clearly of in-
terest to explore the properties of such mesoscopic super-
conducting systems, where the motion of electrons as well
as Cooper pairs is ballistic. In particular, when the Fermi
wave length in the semiconductor is comparable to the
system size, new quantum eAects may be observed as a
consequence of the quantum-mechanical nature of an in-
dividual electron. A superconducting transistor with a
constriction in a normal inversion layer is not only a pos-
sible candidate for testing these ideas, but may also have
significant implications in future technology. By an anal-
ogy with the quantum point contact (QPC), where such a
new eAect, i.e., the quantization of conductance in units
of 2e /h, has recently been observed [6-8], we will call
such a superconducting transistor the superconducting
quantum point contact (SQPC). It is of interest to note
that the SQPC's may be realized by putting additional
gates on the two-dimensional inversion layer, in the same
way as in the QPC's.

In this Letter, we study the static Josephson eff'ect of
SQPC s in the ballistic regime using a simple two-
dimensional model. Emphasis will be put upon how the
discreteness of the energy levels of quasiparticles at the
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FIG. l. A schematic picture of a superconducting transistor.
The Josephson efI'ect is a combination of the two processes: the
penetration through the S-Srn interfaces and the conduction in
the inversion layer. The gates by which the proximity coupling
is controlled are not depicted in this figure.

constriction affects the Josephson current at low temper-
atures. The problem of conduction of supercurrent
through small numbers of channels has largely been re-
stricted to resonant tunneling through localized impurity
levels in dirty superconducting-doped-semiconductor-
superconductor junctions [9]. It has rarely been dis-
cussed in the case of clean systems [10]. We demonstrate
that a steplike change in the critical current may be ob-
served in SQPC's under appropriate conditions as a func-
tion of the width of the constriction or of the carrier den-
sity, each of which can be controlled by a corresponding
gate bias. This feature is the counterpart of the quantiza-
tion of the normal-state conductance in QPC's [6-8].
However, there are several diff'erences between these two
phenomena; in SQPC's the steplike change is not always
observed and, even when it is realized, the magnitude of
the step is not universal.

The Josephson eAect in superconductor-semiconductor-
superconductor (S-Sm-S) junctions can be thought of as
a combination of two processes (Fig. 1). The first one is
the penetration of Cooper pairs through two S-Sm inter-
faces from a superconductor to a semiconductor and vice
versa. This is simply the proximity eA'ect. The other pro-
cess is the transport of two electrons in the semiconductor
from one S-Sm interface to the other while keeping their
phase memory as a Cooper pair. Here we shall focus on
the latter process, i.e., the communication of the super-
conducting phase coherence through small numbers of
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open channels in the SQPC, and we are not concerned
with the details of the proximity eAect around the S-Sm
interfaces. We adopt the following approximations to
simplify the analysis, and to emphasize the physics in-
volved. We treat the SQPC's as two-dimensional sys-
tems, in which the pair potential A(x,y) is assumed to be
constant in the superconducting regions [A for x (0 and
Aexp(ip) for x )L], and vanishing in the normal region;
see inset of Fig. 2. Moreover, we assume that the motion
of quasiparticles of efl'ective mass m is ballistic, and that
reflections at the S-Sm interfaces are neglected, except
for Andreev rellections [11]. The static Josephson cur-
rent is calculated from the probability amplitudes of An-
dreev reflections, based on a recently developed formula-
tion [12].

We shall begin with a qualitative discussion of the dc
Josephson eA'ect in the SQPC s within the adiabatic ap-
proximation. That is, the width of the constriction W(x)
is assumed to vary smoothly compared with the Fermi
wavelength XF. The wave function of the quasiparticles
belonging to the jth channel can be written as
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FIG. 2. Critical current as a function of the width of the
constriction: The upper curve is for T=0.5 K and the lower
curve is for T=1.0 K. Inset: Schematic of the model used in
the numerical calculations.
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where p~(x) is a (two-component) vector wave function.
Solving the Bogoliubov-de Gennes equation [13], we ob-
tain the probability amplitude for the Andreev reflection
of an electronlike quasiparticle of energy E, injected from
the left-hand side through the jth channel, as
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The dc Josephson current I can be calculated from the
amplitude [12] by
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where @~ = —i@~(E iso„), ro„ is the Matsubara fre-
quency, rr(2n+ 1)/P, and 0„=(co„+A ) '~ . Equation
(4) shows that the contributions of tunnel current
through the closed channels are negligibly small and that
the eA'ect of the discreteness of the energy levels may not
be seen in the 3osephson current so clearly as in the
normal-state conductance. In the case L))(=A, vF/nd, ,
an approximate expression of the critical current I, at
zero temperature is obtained as

I
and M is the largest integer to make v~ a real number
[14,15]. The above expression, Eq. (5), can be under-
stood as a product of 2eA/6 and (~/L = h, v~/xhL, and the
latter factor indicates to what extent the phase memory
of Cooper pairs can be preserved in the jth channel. This
result is a natural extension of the well-known expres-
sion for the three-dimensional superconductor-normal-
metal-superconductor junctions [16,17] to the case of
SQPC's [18]. One can see from Eq. (5) that the critical
current is entirely dependent on junction parameters, v~

and L, while the quantized magnitude of the normal-state
conductance of QPC's is just a universal quantity, 2e /h.
Furthermore, it depends on the geometry of the system as
to whether I, shows steplike behavior as the number of
open channels M is changed. For example, when the
variation of W(x) is sufficiently smooth, a change in the
number of open channels may not be seen clearly from
the critical current. We shall demonstrate this in the fol-
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lowing calculations.
Next we examine the opposite situation in which the width changes abruptly between the wide and narrow regions

(see inset of Fig. 2). The normal region of total length L consists of a narrow region of width Wt and length D
(L ) 2D), and two wide regions of width Wz. The sample geometry is defined by hard-wall boundary conditions. The
critical current is calculated numerically as a function of the width W~ or the carrier density N which is assumed to be
common to the superconducting and normal regions.

A wave function corresponding to an electronlike quasiparticle injected from the left superconductor is written as

v
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The coe%cients a „, b „, c „, and d „are determined by the matching conditions at the superconductor-normal and
wide-narrow interfaces. The dc Josephson current is related to a (p, E) by

(10)

The details of the calculations will be published else-
where.

The results of the critical current are shown in Fig. 2
as a function of W~ for a fixed carrier density (N=5
X10'' cm ). We set L =100 nm, D=20 nm, Wq=120
nm, h(T=O K)=1 meV, and I=0.024m„where m, is
the electronic mass [19]. With this carrier density, the
increase of W~ by an amount kF/2=18 nm amounts to
the opening of another channel. A steplike change can be
seen clearly, especially for small values of W~. The struc-
tures are less obvious for large values of W~. One can
also see that each step has a finite slope, which means
that the critical current is not quantized in a rigorous
sense, as we mentioned in association with the adiabatic
approach.

The critical current is also calculated as a function of
the carrier density N. As expected, it changes in rather
diA'erent ways according to the ratio of W~/Wq (Wq =120
nm) as shown in Fig. 3. The curve is almost steplike for
W~/Wq= 1/3, while it appears more as a straight line
with some structure for W~/Wq =2/3.

The results shown in Figs. 2 and 3 show that the
discreteness of the energy levels at the constriction leads
to measurable steplike variations of order 0.2 pA in the
critical current, which may be observed in future high-
mobility superconducting quantum devices. In real sys-
tems, however, there always exist Schottky barriers at the
S-Sm interfaces, which reduce the density of the Cooper
pairs in the semiconductor [41. Thus the critical current
decreases by a factor of P, where P is the transmission
probability through the barrier. This eftect may be in-

i
eluded by using a renormalized Ph, in our theory. There-
fore, in order to observe the steplike feature of the critical
current, it is necessary to find a good combination of a su-
perconductor and a clean semiconductor.

In summary, we have studied the dc Josephson eAect in

SQPC s in the ballistic regime using simple two-di-
mensional models. We have found that in some cases the
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FIG. 3. Critical current as a function of the carrier density.
The arrows indicate the densities at which another channel
opens.
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critical current shows a characteristic feature due to the
discreteness of energy levels around the constriction.
This will be a common feature of phase-coherent ballistic
conduction of supercurrent through a constriction in su-
perconducting quantum devices.
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