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Isotope Effects in Hydrogen-Bonded Crystal KHzPO4
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The energies and wave functions of both the ground and excited states are calculated for a proton in

KDP (KH2PO4) and a deuteron in DKDP (KDqPO4), respectively. On the basis of these calculations,
the isotope effects on the saturated polarization and the transition temperature of the ferroelectric phase
are examined. It is shown from these results that remarkable isotope effects are caused by the isotope
dependence of changes in the ground-state energy induced by a distortion of PO4 tetrahedrons.

PACS numbers: 77.80.Bh, 05.70.Fh, 77.30.+d

One of the striking features of hydrogen-bonded crys-
tals, such as KHqPO4 (KDP), is that there is a large iso-
tope effect on the transition temperature T, from a fer-
roelectric phase to a paraelectric phase. For example,
KDP and its deuterated isomorph DKDP undergo phase
transitions at 122 and 213 K, respectively. To account
for this remarkable isotope effect, a tunneling motion of
protons, in addition to interactions between neighboring
protons, has been introduced by Blinc [1] and by Tokuna-
ga and Matsubara [2]. In this model, the change in T, is
qualitatively explained by a large difference of tunneling
matrix elements due to the mass difference between a
proton and a deuteron. Kobayashi [3] has taken account
of an optical phonon mode coupled with the tunneling
motion, showing that the transition is of a displacive type
and is accompanied by a softening of the optical mode,
which is called a "soft mode. " Since this conclusion
seemed to be supported by many experiments, including
observations of the soft mode, his model has been accept-
ed as the mechanism of the phase transition of KDP-type
crystals.

Recent experiments concerning KDP and DKDP, how-

ever, indicate that there are some doubts regarding the
validity of this model [4]. In particular, Tominaga and
co-workers [5,6] concluded from Raman-scattering ex-
periments for KDP and DKDP the following: The mech-
anism of the phase transition is of an order-disorder type;
the mode which has usually been assigned to the soft
mode comprises two components of a polarization-Auc-
tuation mode and a libration mode of PO4 tetrahedrons.
Futhermore, Ichikawa [7] found that the increase in T,
upon deuteration can be attributed to an accompanying
increase in the oxygen-oxygen distance between two PO4
tetrahedrons (d) and in the displacement of a proton (or
a deuteron) from the center of the oxygen-oxygen dis-
tance. He called this the "geometric isotope effect."
Later, Nelmes [8] reexamined the high-resolution neu-
tron-diffraction results for KDP and DKDP, and insisted
that a part of the increase (about 40 K) is caused by a
direct tunneling effect, although there is also the
geometric isotope effect.

It is assumed here that all distortions of PO4 lie along the
c axis in a KDP crystal and that the distortion of
tetrahedron i is proportional to its electric dipole moment
p;. The first term in this expression represents the elastic
energy associated with the mechanical deformation of the
tetrahedrons. Accordingly, the parameter A must be pos-
itive. The second term expresses the interaction energy
between dipoles. The last term is the energy of 2N pro-
tons, where E;~ is the ground-state energy of a proton
connecting two neighboring tetrahedrons i and j. E;~ and
its excitation energies can be obtained by solving the
Schrodinger equation for the proton, i.e. ,

[(—n 'i2m)V'+ U]~„=E;",~„.
The potential acting on the proton, U(r), is described by
involving an asymmetric potential F;~x induced by p; and

pj as follows:

V(r) = ~(a,'+a,')+&(p,'+p,')

+ v([(x —x, )'+y'+ "]'")
+ V([(x—x, ) '+y'+z'] '")+F„x, (3)

We propose a new model in which a strong coupling
between the protons and distortions of PO4 tetrahedrons
is assumed, and the interaction between protons is disre-
garded. Based on this model, we performed numerical
calculations on KDP and DKDP, including the energies
and the wave functions of the proton and deuteron, and
some of the properties of the ferroelectric phase. The
purpose of this Letter is to show that a consistent account
of the isotope effects can be obtained from the knowledge
of the energies and wave functions of the proton and
deuteron.

Let us consider a system which comprises N distorted
PO4 tetrahedrons and 2N protons connecting two neigh-
boring tetrahedrons. We can write the total energy of
this system as

N
1

N 2lv

E~.t= —X I '+ ZD&p p&
—ZE&—i=] i j (ij)
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where a; and P; are bending angles defined by

a; =sin ' [y/[(x —x;) '+y'] I~']

and

P; =sin '{z/[(x —x;)'+z'] I~z] .

x; and x~ are —d/2 and +d/2, respectively. V(r) is the
Morse potential,

V(r) =a[exp[ —2a(r —rII)] —2exp[ —a(r —ro) l] .

The coordinate axes used here are shown in Fig. 1.
In order to solve the Schrodinger equation, we adopt a

numerical method which was derived, for the first time,
by Kimball and Shortely [9] and applied to hydrogen in
metals by Sugimoto and Fukai [10]. Regarding parame-
ters f and g in Eq. (3), f=0.2 eV and g=1.2 eV are
used. Matsushita and Matsubara [11] determined the
values of e, a, and ro in order to reproduce the empirical
relation between d and the oxygen-hydrogen distance
found widely in various hydrogen-bonded crystals. We
slightly adjusted their values and used a=2.0 eV, a =3.0
A ', and ro=0.98 A.

Using the above values and d=2. 50 A, we calculated
both the energies and wave functions of the ground state
and the excited states of a proton in KDP, with various
values of F;~. Calculations on DKDP were also per-
formed using the same formula by substituting the deute-
ron mass in Eq. (2) and by adopting d=2. 52 A, which is
the observed value of d in DKDP.

The F;j dependences of the excitation energies of a pro-
ton (AE„AE~, and hE, ) obtained from these calcula-
tions are shown in Fig. 2. Here, hE is the energy
difference between the ground state and the first excited
state of motion in the x direction. Similarly, the
differences for the y and z directions are denoted by AE~
and AE„respectively. The results show that hE in-
creases with increasing F;~, whereas both hE~, and dE,
decrease. Shibata and Ikeda [12] performed inelastic
neutron-scattering measurements on KDP, observing vi-

bration modes in the x direction at 28 and 160 meV as
well as on the plane perpendicular to the x direction at
125 and 160 meV. At F;~d=l.5 eV, we can show that
h,E~ =0.16, hE~ =0.12, and hE, =0.16 eV. These results
agree well with their experimental results if the mode ob-

served at 28 meV is one coupled with PO4 tetrahedrons.
Accordingly, we shall use below the following potential
parameters: f=0.2 eV, g=1.2 eV, a=2.0 eV, a=3.0
A ', and r0=0.98 A.

In Figs. 3(a) and 3(b) are shown profiles of the poten-
tial wave functions for a proton along the x direction at
F;~d=0 and F;~d=1.5 eV, respectively. At F;,d=0, the
potential has a hump at the bottom of the broad potential
well. However, the wave function for the ground state
extends over the broad potential well and the maximum
of its amplitude is located at the center of the oxygen-
oxygen distance. At F;~d=1.5 eV, the ground-state wave
function is strongly localized on one of the two potential
minima, which is deepened by the asymmetric term F;~.
The maximum of its amplitude is at about 0.18 A from
the center, which is in good agreement with the experi-
mental result obtained from a neutron-diffraction mea-
surement [13]. We emphasize here that there is no tun-
neling motion in our potential model.

The Fj dependences of the ground-state energy Ej'for
KDP and DKDP are shown in Fig. 4. Ej'can be repro-
duced by the function

Z,' =(h '+ I'F') '"—h (4)

with h=0. 110 eV and 1=0.222 A for KDP, and with
h =0.058 eV and I=0.225 A for DKDP, respectively.

In order to proceed, we assume the following relation:

F;i =K(p;+ p) ) . (5)
Furthermore, we adopt a mean-field approximation for
the dipole-dipole interaction. This approximation is ex-
pected to be valid for an interaction with a long-range
character. By introducing the averaged interaction con-
stant (D) and the order parameter of the system (p) we
can replace Eq. (1) with

0.20

0. 15

(x, y, z j 0.10

(x, o, zj-- 0.05—

0.00
0.0 0.5 1.0

F] d (eVj

2.0

FIG. 1. The coordination axes used here.

I.IG. 2. Variation of the excitation energies of a proton with
the asymmetric parameter F;,. hE,-, AE, , and hE- are denoted
by solid, long-dashed, and dashed lines, respectively.
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The order parameter (p) can be obtained from the self-
consistent condition p =(p;), where the thermal average
( . ) is defined by

/dpi . . Jdp~ [A'exp( E.../kT)]—
7

jdpi . Jdpz[exp( —Ei,i/kT)]

=K(p;+p, ) =0 are 0.08 eV in KDP and 0.05 eV in

DKDP, respectively. This means that there is no increase
in the entropy of the system when p;(i =1, . . . , N) =0,
because the excitation energies are suSciently larger than
the thermal energy at T—T, . Accordingly, a transition
of the displacive type is impossible in our model.

In order to calculate T„we must determine p self-
consistently using Eqs. (6) and (7); this is difficult to do
exactly. We therefore assume here that p; =p, S; (S; =1
or —

1 for all i) Under th. is assumption, E„, can be
rewritten as an Ising-type expression,

Note that Eq. (6) is equivalent to that derived by Kojyo
and Onodera [14] for CsHqPO4 and CsDqPO4, except for
its dimensionality.

First, let us examine the isotope eA'ects of the saturated
polarization (P, ) by using Eq. (6). Since p;=p, holds
for all tetrahedrons at T=O K, Et,t can be written as 2/v

E„,=—p, S g S; —JgS;S +E', (10)
i =] (ij&

where S=(S;) and J= 2' [[h +(2IKp, ) ]'i —hj. The
values of J can be calculated with the estimated values of
h, I, K, and p„which were obtained in the above discus-
sion. The calculated values on KDP and DKDP are
J=0.031 and 0.060 eV, respectively. For simplicity, we

again adopt a mean-Geld approximation for the nearest-
neighbor interaction term (the second term). In this ap-
proximation, the transition temperature (T, ) is given by

E...=N[-,' (W+D)p' —2([h '+ (2IKp )'] '"—h)j. (8)

Considering that p, is determined by the condition
BE„,/Bp, =0, the saturated polarization, P, =Np„ is

given by

P, =(N/21K)[[2(2IK) /(A+D)] —h j'i (9)

By using P, =5.0 pC/cm (the observed value of P, in

KDP), h =0.110 eV, I=0.222 4, and F~d=1.5 eV, one
can easily estimate K =6.2 x 10 eV/p C cm and
A+D =8.7&10 ' eV/(pCcm) . Since K, 8, and D are
expected to be identical in both KDP and DKDP, the sa-
turated polarization in DKDP can be calculated from Eq.
(9), with h=0.058 eV and I=0.225 A. The calculated
value for DKDP is 6.3 pC/cm . This agrees well with the
value of 6.2 pC/cm observed by Samara [15].

Next, let us estimate the isotope efI'ect on T,. We must
note here that the lowest excitation energies at F;~

T, = (2J——, Dp,')/kg .

By using J, p„and the observed transition temperature
in KDP (T, 122 K), the value of D can be determined
from Eq. (11): D=4.42X10 ' eV/(pCcm) . Using this
value of D, T, in DKDP can be calculated. The result is

T, =458 K. This value is higher than the observed one of
T, =213 K. The origin of this disagreement seems to be
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FIG. 3. Profiles of the potential and wave functions of a proton along the x direction (a) at F;,d =0 and (b) at F;,d =1.5 eV. The
wave functions of the ground and first excited states are shown by solid and dashed lines, respectively.
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TABLE I. Values of h (eV), I (A), K (10'" eV/pCcm ), A [10 eV/(pCcm) ], D [10 '

eV/(pCcm)-'], P, (pC/cm'-), J (eV), and T, (K) determined from the F;, dependence of Ej~
obtained using the potential parameters f=0.2 eV, g= 1.2 eV, a=2.0 eV, a =3.0 4, and
ro=0.98 A. Asterisks indicate the experimental values for KDP, which were used to fix the
values of K, 2, and D. The entries in parentheses indicate the experimental values for DKDP.
The unit of d is A.

KDP
DKDP

2.50*
2.52
2.50

(2.52)

0.110
0.058
0.073

0.22
0.225
0.215

6.2
6.2
6.2

4.28
4.28
4.28

4.42
4.42
4.42

5.0*
6.3
5.7

(6.2)

0.031
0.060
0.045

122*
458
275

(213)

0.05

0.001

-0.05

-0.10

-0.15—
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FIG. 4. Variation of the ground-state energy (E~j~) with F~
The calculated values for KDP and DKDP are shown by ~ and

~, respectively. The curves are the best fits by Eq. (4).

due to the mean-field approximation and/or the assump-
tion p; =p,S;. More rigorous treatments of Eqs. (6) and
(7) are required to confirm the reliability of the present
model. However, we emphasize here that the large iso-
tope eA'ect on T, can be directly derived from our model.

In order to examine the geometrical isotope eff'ect, we

again performed similar calculations on DKDP assuming
d =2.50 A (which is equal to the value of d in KDP) and
obtained P, =5.7 pC/cm and T, =275 K. This result in-
dicates that a change in d gives an important contribution
to a change in T„and, accordingly, that the geometrical
isotope eA'ect is exactly realized in our model. We note
here that this enormous change in T, mainly comes from
the change of h: The value of h at d=2.50 A is larger
than that at d=2. 52 A by about 20%. From the property
of the potential function V(r) adopted here, the depth
and the form of the potential U(r) produced by V(r)
strongly depend on d. At d —2.5 A, particularly, U(r) at
F~ =0 has a hump at the center of the oxygen-oxygen
distance [see Fig. 3(a)], and its height hU varies from
-0.04 to -0.02 eV by the decrease of d from 2.52 to
2.50 A. The decrease in AU gives rise to a decrease in the
zero-point energy at Fj—0. The increase of h for a

deuteron denoted above is mainly induced by this effect.
The enormous increase in T, by the modest change of d
reflects the property of U(r) at d —2.5 A. The parame-
ters used in the above discussion and the results obtained
are summarized in Table I.

Finally, we emphasize that the isotope dependence of
E;~ (as shown in Fig. 4) gives rise to isotope effects for P,
and T, . The isotope dependence of Ej is caused by the
dependence of h on d and the mass (see Table I). This
indicates that the physical origin of the isotope depen-
dence of E;~ obtained here is mainly ascribable to the iso-

tope dependence of a change in the zero-point energy due
to the interaction between a proton (deuteron) and dipole
moments of PO4 tetrahedrons.

In our model, no tunneling motion is assumed. Ac-
cordingly, our results strongly suggest that the properties
of hydrogen-bonded crystals, which have been believed to
be due to tunneling motion, should be reexamined on the
basis of the present treatment.
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