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Vicinal Si(001) surfaces are believed to undergo a phase transition between single and double atomic
height steps as either temperature or angle of miscut is varied. Here we calculate the full temperature-
angle phase diagram, which is found to be quite diA'erent than previously believed. In particular, there is

a critical point above which there is no phase transition at all. The results appear to explain the rather
continuous behavior seen in a variety of experiments.

PACS numbers: 68.35.Bs, 64.80.6d, 68.35.Md

Surface steps are crucial in determining the growth
and shape of crystals, and there has recently been intense
interest in understanding the thermodynamics of steps,
e.g. , bunching, faceting, and step-height transitions [1,2].
In particular, steps on vicinal Si(001) surfaces miscut to-
wards [110]exhibit a fascinating transition from single to
double atomic height steps. Yet there is considerable
controversy concerning the nature or even the existence of
a phase transition for this surface [3,4]. Theoretical
treatments have predicted a first-order phase transition
with temperature and with angle of miscut from (001)
[5-8]; yet experiments find only a continuous variation of
all observable quantities [9-11].

Here, by calculating the full temperature-angle phase
diagram, and including a more complete and accurate
description of the fundamental thermal excitations of the
system, we reconcile the predicted existence of a phase
transition with the continuous behavior observed experi-
mentally. We show that there is a thermodynamic criti-
cal point in the surface phase diagram, above which there
is no phase transition with angle. If surface equilibration
only occurs at temperatures above the critical point, then
the phase transitions predicted theoretically should not be
experimentally observable. In addition, the nature of the
transitions is such that they should be far more di%cult to
identify in experiments than previously believed, even if
they occur in an accessible temperature range.

It is well known from different experiments (see, e.g. ,
references in [5]) that at small miscut angles the Si(001)
surface consists of terraces of alternating l &2 and 2&1
dimerization. These terraces are separated by single
atomic height steps, which are denoted [12] S~ and SB
according to whether the dimerization on the upper ter-
race is perpendicular or parallel to the step edge, respec-
tively. (On vicinal surfaces such steps must occur in

S~-S~ pairs, which we collectively call S steps. ) At
larger miscut angles double atomic height steps (denoted
D~) dominate [13,14], and the surface approaches a sin-
gle domain structure, consisting of dimers parallel to the
step edges (1 x 2 dimerization). Alerhand et al. [5]
showed that this transition results from the elastic in-
teraction between steps [15,16] which favors single height
steps at large step-step separations (small angles of mis-
cut), and double height steps at smaller separations.

The role of temperature has so far been included only
as a contribution to the free energy of single height steps
from meandering. Alerhand et al. [5], and later Poon et
al. [8], calculated the free energy of meandering Sz steps
on a single-height-stepped surface. (Meandering of the
Sz is believed to be negligible. ) They employed a one-
dimensional model Hamiltonian including kink-energy
terms and a harmonic potential (so that the Sg step ener-
getically prefers a position in the middle between the two
neighboring S~ steps).

Comparing the free energy of S steps with the energy
of straight Dg steps, Refs. [5] and [8] concluded that
there is a first-order phase transition with angle of miscut
at any temperature, from a pure S phase to a pure D
phase. However, experiments to date have not observed
the abrupt transition predicted. Instead, only a continu-
ous variation with angle [9,10] and temperature [11] has
been observed.

There are two crucial elements missing in previous
theoretical treatments of the surface at finite tempera-
ture. The first element is a correct identification of the
zero-temperature structure. We recently showed that the
transition from single to double steps with increasing an-

gle is not abrupt; rather, it takes place through a
(presumably infinite) sequence of phases consisting of
distinct ordered mixtures of double (D) and pairs of sin-

gle (S ) height steps [17].
The second missing element is a comprehensive de-

scription of step meandering. The meandering of isolated
Sq steps has already been treated in detail [5,8]. Howev-
er, a double step may be viewed as a bound pair of single
steps (S~ and S~). At finite temperature, the S~ step of
this pair may meander, breaking up the double step local-
ly. This excitation has been proposed based on reAection
high-energy electron diffraction experiments of Tong and
Bennett [9], and seen in scanning tunneling microscopy
experiments of Wierenga, Kubby, and Griffith [14]. And
it is this excitation which blurs the distinction between
single and double steps at high temperature, leading to a
critical point in the phase diagram.

Before presenting results we brieAy sketch our pro-
cedure. Rather than considering a single-step pair, we
must consider at least two pairs of steps, in order to de-
scribe the tendency of the surface to form phases consist-
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FIG. 1. Schematic drawing of a vicinal Si(001) surface with

alternating straight S~ and meandering S8 single atomic height
steps. The direction of dimerization is rotated by 90 on con-
secutive terraces. By 1&2 we denote terraces with Si dimer
bonds parallel to the Sg step edge. When the SB approaches
the S~ step (separation 1.5a) a local portion of Da step is

formed, as depicted in the left part of the figure.

ing of alternating single and double steps [17]. Such a
set of two pairs is shown in Fig. 1. The spacing of these
steps, in the absence of meandering, can be described by
four parameters: I, I', d, and L. Here L is the overall
periodicity, which is related to the surface miscut angle 0
and surface lattice constant a by L/a =J2/tan8; l and l'
are the widths of the 2 & 1 terraces enclosed by two neigh-
boring S~ and Sg steps; and d is the distance between the
S& steps. For meandering steps, we can so specify the
spacing along any given atomic row in the [110] direc-
tion, i.e., perpendicular to the step.

The calculation of the interaction energy v(l, l', d, L) is
based on an elastic model [5,8, 15,16,181, which has been
widely and successfully employed to treat this surface.
We include both the force monopole due to the anisotro-

py of the surface stress and the force dipole due to local
rebonding at the Sq and Drr step edges. For the interac-
tion parameters we take the values derived by Poon et al.
[8]. However, one must bear in mind that these elastic
parameter values were obtained by fitting to atomistic
simulations which used an empirical model [19], so they
may not be quantitatively accurate. Thus while the re-
sults here reliably describe the topology of the phase dia-
gram, the actual temperatures and angles at which the
transitions take place are rough estimates.

The geometry of a DB step is essentially that of an

Sz -Sz pair separated by about 1.5a. In fact, by choosing
the spacing to be 1.57a, the long-range interaction field of
the S&-S~ pair becomes equivalent to that of a DB step
for the parameter values used here. Thus, with respect to
the interaction with other steps, the D~ step may be treat-
ed simply as a bound pair of single steps. We need only
add to the elastic model a short-ranged (contact) interac-
tion between single steps to give the correct Da step ener-

However, unlike earlier treatments, to describe the
binding and unbinding of single-step pairs our elastic
model must accurately reproduce the interaction of steps
at atomic distances. We do this by broadening surface
forces with a Lorentzian of width a, retaining the full

complexity of the resulting cumbersome expressions. We

have explicitly verified the accuracy of this treatment at
all step separations.

The step meandering occurs in units of 2a parallel and
perpendicular to the step edge, preserving the local
atomistic structure of the steps [20]. The energy of a
configuration of two meandering step pairs with total
length 2%a parallel to the steps, and terrace sizes I; and
l at the ith position along the step edge, is given by the
Hamiltonian

0= g [X~~l(+) l;~+26, (1 —61 „()i=I
+X~ ) l + i

—1 (
+ 2e, ( I —6'i i )

+2v(l;, l, d, L)] .

Here k& denotes the energy per length of the intervening
S~ step, and e, is the corner energy of the kink. We use
the values proposed in Ref. [8].

The free energy per 1x1 surface unit cell for a fixed
separation d of the S& steps is calculated in the usual way
from the maximum eigenvalue A, .„„ofthe transfer ma-
trix:

f(T, H) =minf(T, O, d) .
d

(3)

Note that, technically speaking, due to this minimization
our model is eA'ectively not one dimensional. It is the
elastic interaction perpendicular to the step edges that
leads to the existence of ordered structures of S and D
steps, and to the corresponding phase transitions.

Because of the added complexity of treating finite tem-
perature, we restrict ourselves to structures of up to two
step pairs. The value of d that minimizes f(T, H, d) de-
scribes the extent to which these step pairs diA'er. If
d =L/2, then the two step pairs are statistically
equivalent; any deviation is a signature of the alternating
SD phase

We start the calculation of X .„„with a mean-field type
of estimate, disregarding correlations of neighboring step
pairs by assuming p(l;, l ) =p(l;)p'(l ), where p(l;, l ) is
the probability of simultaneously having terrace sizes I;
and l . In a final step this result is improved by vector
iteration with the full transfer matrix, allowing for addi-
tional anticorrelation of the terrace widths I; and I .
However, the corresponding correction of the free energy
away from the phase transition is quite small.

We can immediately get a qualitative picture of the na-
ture of the phase transition here from Fig. 2, which shows
the dependence of the free energy f(T, O, d) on d, i.e., on

f(T, O, d) = — ink .„(T,O, d) .
kgT

2La
Here k8 is Boltzmann's constant, and the factor of 2 in
the denominator of the prefactor is due to the unit step of
meandering being 2 times the 1&1 surface lattice con-
stant. In equilibrium the free energy is minimized with
respect to the S~ step separation,
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FIG. 2. Free energy per (I x I) surface unit cell for a given
separation of the Sg steps, vs the deviation of this separation d
from the symmetric (equidistant) value d=L/2. The miscut
angle is 0=1.45 and the temperatures were chosen to be
below, near, and above the critical point in the phase diagram.

FIG. 3. Free energy per surface unit cell vs tanO for
T=0.9T, , and Gibbs's construction. For ease of viewing, a
linear function of tan0 (arbitrarily chosen to equal the T=0
coexistence curve between pure S and D phases) has been sub-
tracted from the data. Solid line: free energy f(T, O) Dashed.

line: free energy f(T,O, d=L/2) for equidistant S& steps, i.e.,
suppressing SD alternation. Dotted line: (formal) Gibbs's con-
struction for coexistence of S and SD or of SD and D phases.
Existence regions for the pure phases are marked. See text for
the correct physical interpretation of coexistence regions.

the degree of step alternation, at different temperatures.
At finite temperature, because of step meandering, the
distinction between S and D steps is not unambiguous.
However, at low temperature the minimum of f in Fig. 2
occurs for d&L/2, i.e., for adjacent step pairs alternating
between S-like and D-like. The latter has also been
verified by direct inspection of the probability distribu-
tions for the 2x 1 terrace sizes of both step pairs.

As the temperature rises, the distinction between S and
D becomes smaller, and so the (thermally averaged) elas-
tic energy gained by SD alternation falls; meanwhile the
SD configuration becomes less favorable for entropic
reasons. At the highest temperature in Fig. 2, entropy
clearly wins, and the lowest f occurs for the symmetric
configuration.

To explain the procedure for constructing the complete
phase diagram, the angle dependence of f(T,8) is shown
in Fig. 3. At low angles we observe a symmetric (i.e.,

d =L/2) phase of S steps, at high angles a symmetric
phase of steps of predominantly D character, and in be-
tween the asymmetric SD phase. As we explicitly allow
for periodicities only up to two step pairs, Gibbs s con-
struction formally gives two coexistence regions: one of S
and SD, and one of SD and D phases. However, from
our earlier more detailed study of the T =0 case [17],we
know that there really is no coexistence of phases. In-
stead, these coexistence regions have to be interpreted as
(quite good) approximations to those parts of the phase
diagram where the more complicated ordered phases
(length ~ 3 step pairs) of mixed S and D steps occur.

The resulting phase diagram is shown in Fig. 4. The
open circles have been determined as described above,
i.e., by Gibbs's construction at each temperature as de-

picted in Fig. 3. Note that the boundaries of the pure S,
D, and SD phases agree well with the earlier T=O
("devil's staircase") results [171,shown as squares. Some
other points near T, were derived in a dift'erent way. For
example, the diamonds were obtained from temperature
scans. However, at temperatures above T, =490 K the
curves of free energy versus tan(0) are convex, and d
equals L/2 for all values of 0. Thus there is no phase
transition above this critical temperature.

This picture of the phase transition implies a very
different interpretation of experimental results. The
freeze-in temperature of step structures on Si(001) is
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FIG. 4. Phase diagram for vicinal Si(001) surfaces. The
thin center region corresponds to an SD phase, and the outside
region to the symmetric phase, which at low temperature may
be interpreted as S and D phases. In the intervening regions,
more complicated mixed ordered phases are expected. The
boundaries of the pure-phase regions agree we11 with results of
an earlier more elaborate treatment at T=O, represented by
squares.
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generally believed to be around 800 K [9,211. If the re-
sult that T, =490 K is even roughly correct (or is too
high), then the experiments measure surfaces equilibrat-
ed above the critical temperature, where there is, in fact,
no phase transition. This would reconcile the theoretical
predictions of a phase transition with the experimental
observations of only continuous behavior.

Because of uncertainty in the values of the parameters
which enter the elastic model, we cannot rule out the pos-
sibility that T, could be above 800 K. However, the
phase transition might still be extremely hard to observe
experimentally. Even at T=O, the transition takes place
through a quasicontinuous sequence of weak first-order
transitions [17], so that properties such as surface energy
or terrace asymmetry should vary in a nearly continuous
manner. At higher temperatures, this will be all the more
true. Thus in the presence of experimental noise, there
might be no observable qualitative difference between the
behavior above and below the critical temperature.
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