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The linear term in the density expansion of the dynamic structure factor has been determined experi-
mentally for the first time. We used neutron-scattering data at very low momentum transfer
(0.3<k <1.2nm ") on room-temperature **Ar at low density (0.06-0.25 times the critical). Only for
k <0.95 nm ™', the experimental data agree qualitatively with a corresponding hard-spheres system.
We conclude that the linear term is a very sensitive probe for studying the two-particle interaction po-
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tential in dilute gases.

PACS numbers: 61.12.Ex, 51.10.+y

The density-expansion approach is a very useful tool
for studying static properties of dilute gases. In many
cases it has been applied to the equation of state in order
to determine static properties connected to pairs and trip-
lets in molecular systems, such as the second virial
coefficient, which provides information on the pair in-
teraction potential. Another application was made re-
cently in neutron-diffraction measurements of the static
structure factor S'(k) in low-density krypton [1] and ar-
gon [2] gases as a function of the density, which allowed
the determination of the pure pair and triplet contribu-
tions to S(k). In this way the pair and triplet interaction
potentials could be investigated in a more direct way than
through the equation-of-state virial coefficients.

Dynamical properties of isolated pairs and triplets in
low-density gases have been studied over the last twenty
years with interaction-induced infrared absorption spec-
troscopy and depolarized interaction-induced light-scat-
tering spectroscopy (DILS) [3].

However, in the examples given above the approaches
are limited in the sense that in the case of S(k), i.e., the
zeroth-frequency moment of the dynamic structure factor
S(k,w), we are concerned only with the density expan-
sion at ¢t =0 of the Van Hove density correlation function
related with S(k,w), while in light-absorption and light-
scattering experiments one obtains a frequency spectrum,
but only in a limited region of k close to 0. Therefore, it
would be of great interest to develop the possibility of ex-
perimentally studying the density expansion of the dy-
namic structure factor S(k,w) in a wide range of both k
and o and, therefore, of the Van Hove correlation func-
tion in a wide range of r and ¢. It is to be expected that
in this way very detailed information on the pair interac-
tion and possibly on triplet interactions can be obtained,
since we believe that the microscopic dynamics is more
sensitive to the intermolecular forces than the microscop-
ic structure.

A few theoretical papers have dealt with the problem
of the density expansion of time-dependent correlation
functions, both in classical as well as in quantum-me-
chanical systems [4-7]. For the case of classical hard
spheres, in particular, it is established that within the
framework of the revised Enskog theory, time-dependent
correlation functions can be density expanded if the den-
sity is low enough and within a density-dependent range
of k and o values [8].

For the general case in which one takes into account
the correlation between successive collisions, it is now
well established from theoretical calculations that dynam-
ical correlation functions cannot be represented as simple
power series of the density for all times, because of
nonexponential long-time tails. Therefore, the corre-
sponding spectra also cannot, in principle, be expanded
near @ =0. This phenomenon also gives rise to the loga-
rithmic terms in the density expansion of transport
coefficients [9]. Both the long-time tails of correlation
functions and the logarithmic terms in the transport
coefficients are evident in molecular-dynamics calcula-
tions and kinetic theory [10,11].

In order to avoid such problems in the analysis of the
density behavior of experimental data for S(k,w), one
should restrict oneself to the (k,w) range where effects
due to long-time tails are negligible within the experi-
mental uncertainties. Or, in other words, one must avoid
the region in (k,w) space where collective modes are
manifest in the spectrum of density fluctuations and one
must fulfill one of the following two requirements:

k>1/1 1)

or
o>1/1, )

where / and t are the mean free path and mean free time,
respectively, in a corresponding hard-sphere system. For
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example, in DILS, where the momentum transfer Ak be-
tween the probe and the sample does not fulfill (1), condi-
tion (2) must be satisfied. We will show how well our
present experimental data meet this requirement.

Kamgar-Parsi, Cohen, and de Schepper [8] show for
hard spheres that binary collisions dominate the dynamics
at k/ > 3, which leads to a linear density dependence of
S(k,w) at low densities. Therefore, we assume that un-
der condition (1) in a real gas the first correction to the
zero-density limit of S(k,w) is equivalent to taking into
account the dynamics of pairs.

When (1) or (2) is fulfilled and for expansion of S (k)
as well as S(k,w), one can write

Sk,w)

S =S Ok, 0)+nSPk,w)+00r?, @3)

where S(O)(k,w) is the free-gas contribution and equals
the dynamic structure factor for noninteracting particles,
and the linear term S(k,w) represents the contribu-
tions due to the interaction and dynamics of pairs. The
higher-order terms in (3) are negligible for

no’kl1, )]

where o is the size of the particles. Under conditions (1)
and (4) S (k,w) is given by [8]

1 1
ot ik v B iotiky > O

where (- --) denotes the one-particle velocity average,
and Ap is the Boltzmann collision operator, which is
determined exclusively by the two-particle interaction po-
tential [12]. Using Eq. (5), it is in principle possible to
calculate S (k,®) numerically from an arbitrary two-
particle potential, but this is outside the scope of this
Letter.

Until now, the explicit calculation of S(”(k,w) has
been carried out only for a classical hard-sphere fluid
[5,8]. Kamgar-Parsi, Cohen, and de Schepper [8] use an
expansion equivalent to (3) at low density (Vo/V <O0.1,
which is equivalent to no’ < 0.14, where V) is the close-
packing volume). They expand S(k,®) in powers of
1/kly, where lo=(nnc2v2) "' is the Boltzmann mean
free path:

S<”(k,w)=ike<
T

Slko) _2 to | I_4
Sk)  rx ki |TP| T %
B *
+°l(ﬁ’—)+0(k10)‘2], 6)
klo

where to=1Io(xM/8kzT)'? is the Boltzmann mean free
time, M the particle mass, kg Boltzmann’s constant, and
T the temperature. The frequency dependence appears
only through the reduced variable w* =wto/klo. The first
term in Eq. (6) is the free-gas term, while 5%, (0*) is re-

lated to S " (k,w) by

kT
M

and is a function of * only. Kamgar-Parsi, Cohen, and
de Schepper [8] find that for k/o> 3 the first two terms in
Eq. (6) are sufficient for a correct description of the
hard-sphere dynamics. In the present paper we will use
this result for comparison with experimental data.

We have measured S(k,w) of room-temperature
(T/T.=2) Ar at three thermodynamic states, with
pressures of 2, 5, and 8 MPa, corresponding to n =0.49,
1.23, and 2.00 nm ~3 or no®=0.02, 0.05, and 0.08, re-
spectively (using 6=0.34 nm for argon), which fulfills
condition (4) as well as Vo/V <0.1. The large coherent
scattering cross section of **Ar (77.9 b) enabled us to ob-
tain a good scattering signal even at the lowest density.
The measurements have been carried out with the time-
of-flight spectrometer INS at the Institut Laue-Langevin
(ILL), Grenoble, modified in order to reach a k range
much lower than in conventional neutron-scattering ex-
periments [13,14].

In the present data the wave-vector transfer at elastic
scattering is in the range 0.3=<k=<1.2 nm ', corre-
sponding to 1.2 < kly =< 4.7 at the lowest density n =0.49
nm ™3 to 0.5<klp<1.9 at n=1.23 nm >, and to
0.3=<klo=<1.2 at n=2.00 nm ~3. Consequently, a good
deal of the data near w =0 do not fulfill condition (1) or
(2). This implies that in particular at »=1.23 and 2.00
nm 3 at the smaller k and o values in the density expan-
sion of S(k,w), a logarithmic term n’lnn may have some
effect and that the linear term may contain contributions
from three-particle dynamics [9,11].

The data analysis consists of two parts. The first is the
extraction of the fully corrected S(k,w) at all densities
[15,16], and the second part is the determination of the
two-body contribution S’ (k,w). A very accurate nor-
malization was impossible to achieve, probably due to
some differences between the geometries of the argon and
the vanadium samples, resulting in an estimated sys-
tematic error of about 15%. This, however, does not
affect the comparison with the theory, since we compare
the experimental S(k,w) divided by the experimental
normalization (calculated as described in Ref. [15]) with
the theoretical prediction for S (k,w)/S (k). Because the
data vary rather smoothly with k, we averaged the exper-
imental data over k intervals of 0.1 nm ~! in order to im-
prove the statistics.

First, we obtained S(”(k,w) using the 2-MPa data
only, by inverting Eq. (3),

S?] ((O*) =

1/2 2
[ﬁ] SO(k,0), )
(o2

1| Sk,0)

W = —q©
SV (k,0) v s S (k,w) |, (8)

using the well-known free-gas Gaussian for S @ (k,w)
given by the first term in Eq. (6). We note that
SV(k,w) is determined rather inaccurately because the
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difference between the two terms in Eq. (8) is typically of
the order of only a few percent. This is an intrinsic
difficulty in this kind of experiment, which can be partial-
ly overcome only by performing very accurate measure-
ments. Moreover, since the deviation from S @ (k, ) de-
creases with increasing k, useful data can be obtained
only at very small k, a condition fulfilled for all k& values
of our experiment.

Next, using the weighted least-squares method, we
fitted, at each (k,w) point, a straight line as a function of
n with zero intercept (i.e., only one parameter) to the ex-
perimental data for S(k,0)/S(k) —S @ (k,») at 2 and 5
MPa, and also to the data at 2, 5, and 8 MPa. The re-
sulting mean-square deviation 62 (i.e., the sum of squares
divided by the number of degrees of freedom) is given in
Table I for each value of k averaged over all w. For
k=1.0 nm~' the fit to three densities is better or of
equal quality as compared to the fit to only the two lower
densities. We conclude that for k=10 nm~' and
n =< 2.00 nm ~3 S(k,w) is linear in the density. This con-
clusion is supported by the observation that the fitted pa-
rameter S ") (k,®) is not significantly different for the fits
at two or at three densities. Thus, for the determination
of the linear term SV (k,®) at k= 1.0 nm ~' we used
the experimental data at 2, 5, and 8 MPa. At
05<k<1.0nm~', §%is larger for the three-density fits
(but the difference is not as large as for k < 0.5 nm ~!).
This must be due to the fact that the data at kK <1.0
nm ~! and 7 =2.00 nm ~? are not linear in n. Moreover,
from the drastic increase of 62 at k < 0.5 nm ~! when
adding the third density n =2.00 nm ~3 in the fit, we con-
clude that higher-order terms are probably already
significant for n < 1.23 nm ~3, which is also indicated by
the fact that at k <0.5 nm ~', S"(k,w) obtained from
only the lowest density differs considerably from the re-
sult of the fits to the two lower densities. In other words,
the region of linear behavior in n expands with k, similar-
ly as for light-scattering data, where the region of linear

TABLE I. Mean-square deviation &2 for the least-squares fit
of $™(k,w) with two and three densities, respectively. For
each k the numbers are averaged over all w.

behavior in n expands with o (see, e.g., Ref. [3]). There-
fore, for the determination of SV (k,w) at 0.5 <k < 1.0
nm ~!, we used the fit to the data at n=0.49 and 1.23
nm ~3, and at k < 0.5 nm ~' we used only the data at the
lowest density, in the way described in the previous para-
graph. We conclude that we obtained the true linear
term S (k,w) in the density expansion of S(k,w), with
the possible exception of the region kK <0.5 nm ~'; we
cannot check the linear density dependence of S(k,w) for
n =< 0.49 nm ~* with the help of data at lower density.

In Fig. 1 we plot the hard-sphere theoretical s%, (0*)
taken from Ref. [8] for various k values and as a function
of the reduced frequency w*, together with the corre-
sponding quantity for argon obtained from the experi-
mental SV (k,w). Note that s% (0*) should be indepen-
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k (nm™") Two densities Three densities
0.3 1.13 3.18
0.4 0.36 2.57
0.5 0.48 3.21
0.6 0.73 1.39
0.7 0.88 1.57
0.8 1.14 1.52
0.9 0.87 1.13
1.0 1.01 1.02
1.1 0.99 0.84
1.2 0.93 0.72

Average 0.89 1.40
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FIG. 1. sfi(w*) for argon at room temperature (symbols
with error bars) and for hard spheres according to Kamgar-
Parsi, Cohen, and de Schepper [8] (solid line). Experimental
data are from (a) k=0.3 nm ! and n=0.49 nm ~?; (b) k =0.7
nm~ ', n=0.49 and 1.23 nm ™3 (¢) k=1.2 nm~', n=0.49,
1.23, and 2.00 nm ~?. Note that the experimental points are
correlated due to interpolation in the data-reduction procedure;
the error bars are estimated from the propagation of the stan-
dard deviation of the statistical errors in the measurements.
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dent of k, which is apparently not the case for the experi-
mental data. There is qualitative agreement for & <0.7
nm ~!, but at larger k, quantitative discrepancies are
clearly visible, especially at the lower frequencies
(w* <0.4). Since klq is close to 1 for part of the data
leading to the results in Fig. 1, this might be due to
three-particle contributions in S (k,w) (see Refs. [9]
and [11]), or even to interference from a logarithmic
term. However, from Kamgar-Parsi and Sengers [11], it
can be seen that for the transport coefficients of hard
spheres at densities corresponding to those of the present
experiment the first term following the linear one, viz.
n’lnn, is at least 1 order of magnitude smaller than the
linear term. Therefore, we conclude that the differences
in Fig. 1 between the experimental data and the hard-
sphere results are due first to the difference between the
argon potential and hard spheres, which at these low den-
sities cannot account at all for the pair interaction in real
systems, and second, at lower o, possibly to contributions
from three-particle events in the linear term.

In conclusion, we have shown for the first time that in-
elastic neutron scattering at low angles can be performed
in low-density gases and analyzed in terms of density ex-
pansions in order to obtain information on the two-body
dynamical properties in a way similar to what has been
done for the static properties. It should be stressed that
this was only possible through the availability of the in-
elastic low-k neutron-scattering facility at the time-of-
flight spectrometer INS of ILL. We have found that,
within the experimental uncertainties, a linear density
dependence of the deviation from the free-gas S (k,w) ex-
ists for 0.5<k <1.0 nm ™' at densities » =< 1.23 nm ~°
and for 1.0=<k=<12 nm~' even at n<2.00 nm 3,
which, however, cannot be described in terms of hard-
sphere dynamics. Also, we have shown that the dynamics
in argon at room temperature and low density does not
scale with k/o, as would be the case for a hard-sphere sys-
tem. Thus, we have demonstrated that the linear term is
very sensitive to the shape of the two-particle potential
and that in principle we have a new experimental tech-
nique to obtain information on the two-particle potential.
Explicit calculation of the linear term with a realistic po-
tential, based on a general theory [17], can in principle be
performed and would be desirable for fruitful comparison

with the experiments.
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