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We show that regular and irregular spectral statistics have direct, distinctive, and observable time-
dependent manifestations in the behavior of the survival probability P(r)=|(y(0)|y(¢)}]|? averaged
over Hamiltonian ensembles and initial conditions. Specifically, systems exhibiting energy-level repul-
sion display characteristically strong decorrelations at short times. The proof relies solely on Liouville
spectral properties of ensembles of bound quantum systems.

PACS numbers: 05.45.+b, 03.65.Sq

In the classical mechanics of conservative Hamiltonian
systems it is time dependence in general, and the long-
time limit in particular, which distinguishes integrable
from chaotic dynamics. For example, integrable distribu-
tions whose spectral density [1] contains only continuous
components relax to long-time limits which depend inti-
mately on the initial conditions whereas the long-time
limit in the chaotic case depends only on the energy [2].
Considerations of the long-time limit for dynamical evo-
lution in bound-state quantum mechanics is, however, less
useful as a means of distinguishing regular from chaotic
dynamics since the long-time dynamics in this case al-
ways consists of predetermined contributions from a
discrete set of states and hence depends intimately on the
initial conditions. Possibly for this reason, relatively little
effort has been directed towards distinguishing integrable
from chaotic systems on the basis of their quantal time
dependence. Rather, work has focused on classifying sys-
tems on the basis of statistical properties of the energy
spectrum, with regular systems classified [3] as those
which display a Poissonian level spacing statistics (i.e., a
regular spectrum) and chaotic systems as those which
display adjacent level repulsion (an irregular spectrum),
etc. Clearly, however, these spectral distinctions are
relevant only if they result in clear-cut time-dependent
consequences. In this Letter we present rigorous results
showing distinctive time-dependent behavior for the dy-
namics of N-level systems arising from regular versus ir-
regular spectral statistics. Since /N may be small we are
dealing with true quantum behavior, albeit in the semi-
classical energy regime.

Of the few previous studies which have attempted to
discern the difference in quantum dynamics of systems
with regular versus irregular spectra, several have fo-
cused on the survival probability function P(¢)
=y (0)|w(¢))|?, the probability that an initial wave
packet will return to itself after time . Initial studies [4]
indicated that the behavior of P(z) depends more upon
the choice of y(0) than upon the nature of the Hamil-
tonian. Subsequently, Pechukas examined [5] ((P(¢))),
the survival probability function averaged over both
Hamiltonian ensembles and initial wave-function condi-
tions. His study showed a difference, for all time, be-
tween ((P(z))) for a system with a regular spectrum and
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((P(t))) for a system with a harmonic-oscillator spec-
trum, Pechukas’ choice for a model for an irregular spec-
trum. We recently [6,7] improved this irregular model
by utilizing Gaussian orthogonal ensemble (GOE) higher
level spacing statistics and obtained results in excellent
agreement with our computational studies. These results
show that ((P(¢))) for the regular and irregular spectrum
cases do differ, but that these differences are confined to
short times (t=27h/{AE), where (AE) is the average
energy-level spacing), the long-time limit being the same
in both cases.

In this Letter we utilize general properties of the Liou-
ville spectrum of regular and irregular systems to prove
distinctive ((P(z))) behavior arising from the spectral
statistics. Specifically, we show that ((P(¢))) = (P (o0)))
for systems with a regular spectrum, whereas ((P(¢)))
must fall below ((P(e0))) during its time evolution for
systems characterized by level repulsion. Further, we
show (1) that the latter result holds for all ensemble-
averaged autocorrelation functions in systems with irreg-
ular spectra and (2) that the difference in ({(P(¢))) behav-
ior is observable in molecular dynamics using modern
spectroscopic techniques on isolated molecules. These
proofs rely directly upon the connection between the
character of the spectrum of the Liouville operator and
the system dynamics, as shown below.

To construct ((P(¢))) consider an N-dimensional sub-
space and the associated general wave function

N .
lv/(t))=;|a,1e R P a)

in the basis of energy eigenstates |a). Forming P(¢) and
averaging over initial conditions [5], i.e., over X,|a.|?
confined to the unit sphere, gives

2 1

(P(t = + a s
@), N+l TN ED Eﬂcos(k st) ()
where Aos=(E,—Eg)/h. Further averaging over the en-

semble of Hamiltonians then gives [6]

(PN =y (0) [y ()| (3)

N
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Here p,(t) =[5 d\cos(ht)p, (1), where p,(1) is the rth
nearest-neighbor energy spacing distribution, i.e., p; (1) is
the nearest-neighbor spacing distribution, p,(A) is the
second-nearest-neighbor spacing distribution, etc. Note
that ((P(¢))) is parametrized by NN, the dimensionality of
the Hilbert space within which y resides and that A is
now a continuous variable. Equation (4) may be rewrit-
ten as

(PN = ML " a PV Wcosns),  (5)

N + 1 N +1
where, by comparison with Eq. 4,
PN =—"—~

N(N Z =

It is straightforward to show that PV(1) is the probability
of finding the eigenvalue A of the quantum Liouville
operator. Note first that any frequency of the Liouville
spectrum for a bound quantum-mechanical system can be
written as a sum of nearest-neighbor spacings [e.g.,

=(En+r_

rp,) . 6)

(En+r

En+r—1)/h+ st +(En+l_En)/h],

and thus each frequency in the Liouville spectrum can be
classified according to the number of nearest-neighbor
spacings it contains. Let 4; be the event that the Liou-
ville eigenvalue A is an ith-order spacing. The probability
density for A is then given by

P L) =P(A4,U - - UAy—). )

But since A cannot be both an ith-order spacing and a
Jjth-order spacing, P(A4; N A;) =0 for i=j. It follows that
PYW)=XNT7'P(A4;). There are altogether N(N —1)/2
positive spacings in a sequence of NV levels, NV —i of which
are ith-order spacings. Hence the probability of an ith-
order spacing is

_2(N—i)
P(A) =~ = ). )

Doing the sum over i gives Eq. (6). Hence, Eq. (5) is
seen to provide a fundamental relationship between the
distribution of Liouville eigenvalues and the dynamical
quantity ((P(z))).

Consider now ((P(z))) for the two cases of the regular
and irregular spectrum.

Regular spectrum.— Characteristics of the regular
spectrum for an integrable system are known rigorously
in the semiclassical limit [3]. Specifically, p,(L) for the
regular spectrum is given by [8]

" hexpl—ARKAE))
(AE)(r— 1

Ah

pr2)= (AE)

9

Given Egs. (6) and (9) note first that one can show
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that
d’P"Q) _|_h rn | expl=AR/AE))
dr? (AE) (AE) (N—2)
(10)
=0, a1

and that dPV(1)/d\ <0 for A > 0.
To prove that ((P(¢))) = ((P(0))) we first show that
the cosine transform of PY(0),

PN = dr PN Ocosur) (12)

is always greater than or equal to zero. Equation (12)
can be integrated by parts to give

f HE N PN(}\,) Sln(;»t) (13)

N Nea sy sin(Ae)
PN(@)=P"(\)——— ; Y

- [ |4

where the second equality holds because lim; . PV(})
=0, and dPY(A)/dr <0 for all A > 0. By dividing the
interval [0,00) into intervals [nn/t,(n+1)x/t), for n
=0,1,2, ..., over which sin(At) is positive (n even) or
negative (n odd) we can sequentially rewrite Eq. (14) as

dP™(\) lsm(kt)
| t

(14)

(n+1)n/ N :
PN(t)—):(—l)"f o ___de)fx) ~—S"‘(t“) (15)
=3 (=14, @), (16)
n=0
where
| @+ gpN(L) sin(Ar)
ano=|f T o A SR (17)

Note now that A,(t)= A,+,(t) since the intervals
[nn/t,(n+1)n/t) are all of equal length, the sine function
is symmetric about the centers of the intervals, and
|dPN(W)/dA| is strictly decreasing. Thus every partial
sum X M,(—1)"4,(t), and hence P™(z), is positive.
However, given Egs. (5) and (12),

N—

N
N_HP @), (18)

«P@E)) —W"F

so that PV(¢) = 0 implies that ((P(¢))) never falls below
its long-time limit of 2/(/V+1).

Irregular spectrum.— The analytic form for PNY(1) for
the irregular case is not known formally, although the
GOE model has proven successful in comparison with
computational studies [6,8]. To insure complete generali-
ty we rely solely upon general properties of p,(1), with
the explicit recognition that the primary characteristic of
the irregular spectrum is energy-level repulsion. General
properties used below include the following: (a) p,(1)
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—0 as A— 0 for r=2; (b) p,(k) =p,(—1) since the
Liouville operator L is unitarily equivalent to —L; (c)
p-(A) has a unique maximum on the interval [0,°0); and
(d) py(A)— 0 as A— O for irregular systems since they
exhibit level repulsion [9]. Note that the Riemann-
Lebesgue lemma guarantees that p,(¢) = f¢°p, (A )cos(At)
— 0 as t— oo, We choose the normalization condition
J&°dr p, (W) =1 for convenience.

Given these properties it is clear that for ensembles ex-
hibiting level repulsion P¥(1) is increasing over some in-
terval [0,A*] with a maximum away from zero. This is
the case because PY(L) is of the form X,c,.p,(\) with
¢, =2(N—r)/N(N —1) >0, each of the p,(1) is increas-
ing on some interval [0,A*], and p,(A)— 0 as A— oo,
This simple PV(L) property, coupled with the following
lemma, allows us to demonstrate that in an irregular
spectrum case {(P(¢))) necessarily falls below its asymp-
totic value. R

Lemma.— Let f(1) be a function on the interval [0,0)
with cosine transform f(z). If f(z) is integrable and posi-
tive for all ¢ then f(A) has a global maximum at A =0.

To show this consider that

2 [a st = cosan)) >0 (19)
for A=0 and f(¢)=0. But

2 [T a0l —cos1=f@ -f0). Q0

T YO

Hence, f(0) > f(1) for A=0 and so f(A) has a global
maximum at A =0.

Applying this result to the irregular PY(1.), with prop-
erties as noted above, implies that its cosine transform
PN(¢) must go negative and, by Eq. (18), that ((P(z)))
must fall below its asymptotic value of 2/(V+1).

These results provide a clear-cut distinction between
the time dependence of systems with regular and irregu-
lar spectra [10]. Sample results demonstrating this be-
havior are shown in Fig. 1 for the case of the (regular)
circle billiard and (irregular) stadium billiard. In these
computations the average over initial conditions is per-
formed in accord with Eq. (2) and the averaging over
Hamiltonians is modeled by an average over J different
energy intervals (J =100 for the stadium, J =800 for the
circle), each containing N levels. The results, which are
in excellent agreement with Poisson- and GOE-based
models [6], clearly show much deeper falloff for the irreg-
ular case than for the regular case, with the falloff below
the asymptote quite apparent. In both these cases the
overall {(P(¢))) behavior is devoid of significant addition-
al structure. However, far more complex ({P(¢))) behav-
ior (e.g., extreme oscillations), still consistent with the
above results, has been observed for both the regular and
irregular cases, as discussed elsewhere [6].

The ((P(¢))) result for the irregular spectrum is easily
generalized to any ensemble-averaged autocorrelation

0.50

0.30

0.20

FIG. 1. ((P(1))) for the regular circle billiard (dotted curve)
and for the irregular stadium billiard (solid curve) for the case
of N=10. The slight oscillation of the stadium result is due to
the relatively small number (1000) of energy levels used. Nor-
malization is such that ((P(0)))=1.

function. That is, the autocorrelation function of any ob-
servable A4 is

C4(t) =Tr{47(0)A4()} @n

=3 |4y m|*cosOpmt) , (22)

and thus C4(¢) averaged over Hamiltonians [6] is
(CA(t)>H =Z|An.n|2+zzlAm.m+r|2pr(t)- (23)

Since the coefficients ¢, =2, |A,,,',,, +r|% are positive, then
2, X | Amm+-1?p,(t) must take negative values if the
system exhibits level repulsion and hence (C,(¢))y must
fall below its long-time limit. However, in this case such
behavior is also possible for autocorrelation functions in
regular systems. Thus the survival probability remains of
particular interest since its time dependence allows for an
unambiguous identification of regular versus irregular
spectral statistics and, in addition, it has a transparent
connection, via Eq. (5), to the Liouville eigenvalue spec-
trum.

Finally, we note the possibility of measuring ({(P(¢)))
differences for the case of isolated molecule dynamics, a
subject of considerable interest in atomic and molecular
physics. One route is to examine averages over the stimu-
lated emission spectrum which, assuming the experimen-
tal background and linewidths can be properly removed
[6], will display ((P(¢))) directly [11]. Alternatively,
{(P(t))) can be measured indirectly by measuring the
fluorescence intensity S(¢) resulting from preparations of
many different initial superposition states y,(¢) on an ex-
cited electronic surface. If these states fluoresce onto M
eigenstates |g,) of the ground electronic surface then the
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fluorescence intensity is

M
S@)= ;_‘,I [{gnlwe (]2 (24)

Constructing the autocorrelation function S(t+17)S(t)
for each of the prepared states y.(0) and averaging
them to obtain the normalized C,(t)=(S(+1)S())/
(S(2)S(z)) gives the following relationship [6]:

_IM—-1_ (PG _
Cs(1) { " + v }exp{ r</n}, (25

where v, (0) is comprised of a superposition of NV levels
and where all eigenstates on the excited electronic surface
are assumed to have the same linewidth I'. Thus (P (£)))
associated with N-level preparation can be extracted
directly from Eq. (25).

The relationship between these quantum dynamics re-
sults and classical integrable versus chaotic time depen-
dence is currently under investigation.
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