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We describe a new type of soliton-impurity interaction and demonstrate that the soliton can be totally
reflected by an attractive impurity if its initial velocity lies in certain resonance “windows.” This effect
has an analogy with the resonance phenomena in kink-antikink collisions [Campbell, Schonfeld, and
Wingate, Physica (Amsterdam) 9D, 1 (1983)], and it can be explained by a resonant energy exchange
between the soliton and the impurity mode. Taking the sine-Gordon and ¢* models as examples, we find
a number of resonance windows by numerical simulations and develop a collective-coordinate approach

to describe the effect analytically.

PACS numbers: 03.40.Kf, 63.20.Pw, 66.70.+f

Wave propagation in nonlinear disordered media has
become an extensively studied subject in recent years [1].
It is known that nonlinearity may drastically change
transport properties of disordered systems when it con-
tributes to create solitons (see e.g., Refs. [2] and [3], and
references therein). As a first step to understand soliton
transmission through disordered media, one has to study
soliton scattering by a single impurity. The properties of
such a process depend on the type of soliton [2], but gen-
erally, they can be explained by a simple model in which
a soliton moving in an inhomogeneous medium is con-
sidered as an effective particle, the soliton position being
the particle coordinate [4-6]. In this approach, the only
effect of the impurity is to give rise to an effective poten-
tial on the particle. In particular, a soliton may be
trapped by an attractive impurity due to loss of its kinetic
energy through radiation [6]. However, the impurity is
not a “hard” object, and it may support a localized oscil-
lating state, the so-called impurity mode (see, e.g., Refs.
[7] and [8], and references therein). As a consequence, a
soliton may excite the impurity mode, transferring part of
its kinetic energy to the impurity, and the interaction will
be inelastic [7]. The purpose of this Letter is to describe
numerically and analytically a new type of interaction be-
tween a soliton and an impurity when the impurity sup-
ports a localized impurity mode. We demonstrate that
the soliton can be totally reflected by an attractive impur-
ity if its initial velocity lies in certain resonance ‘“‘win-

dows.” This effect is quite similar to the resonance phe-
nomena in kink-antikink interactions [9-12], and it can
also be explained by the resonant energy exchange mech-
anism proposed by Campbell, Schonfeld, and Wingate
[9]. In the framework of the sine-Gordon and ¢* models,
we find a number of resonance windows and develop a
collective-coordinate approach to describe the resonant
interactions. We believe that the resonant effects studied
in this Letter may be observed in other nonlinear systems
which support soliton excitations, e.g., in hydrogen-
bonded chains when ionic or bonded defects interact with
localized inhomogeneities (see, e.g., Ref. [13]).

To analyze an example of such a resonant interaction,
let us consider the well-known sine-Gordon (SG) model
including a local impurity,

Uy — Uxy Fsinu =€(x) sinu , (6D

where 8(x) is the Dirac & function. When the perturba-
tion is absent (¢=0) the SG model supports undistorted
propagation of a topological soliton, the so-called kink,
which is given by

ur =4tan "'exp{lx — X1/ -V}, )

where X =Vt is the kink coordinate and ¥ =X is its veloc-
ity. For > 0, the impurity in Eq. (1) creates an effective
attractive potential well for the kink. Previous analytical
considerations of this problem, taking into account only
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FIG. 1. The kink coordinate X (¢) vs time for initial velocities
Vi situated in three different regions: the region of pass (solid
line, V;=0.268), of capture (dotted line, ¥;=0.257), and of
reflection (dashed line, V; =0.255).

radiation losses (see Ref. [6], p. 841), demonstrate that
the threshold velocity for the kink capture is exponential-
ly small in €, and that the scattering may be described by
a simple model of a particle moving in an attractive po-
tential U(X) = —2¢/cosh’X. Such a consideration sug-
gests that the kink will either pass the impurity or be cap-
tured, and that reflection of the kink is impossible.

We have studied the kink scattering by a pointlike
impurity numerically, using a conservative numerical
scheme to integrate Eq. (1) [14]. The simulations are
performed in the spatial interval (—40,40) with discrete
step sizes Ax =2Ar=0.04. When handling the Dirac 6
function, we take its value to be equal to 1/Ax at x =0,
and zero otherwise. The initial conditions are always tak-
en as a kink centered at X = —6, moving toward the im-
purity with a given velocity ¥; > 0. Fixed boundary con-
ditions are used: u(—40)=0 and u(40) =2rn. Here we
are only interested in the attractive impurity, i.e., € >0,
because in the opposite case the possible resonance phe-
nomena are not likely to exist. We have made intensive
numerical simulations of the problem, and here we will
describe the results for the case € =0.7 in detail.

In the numerical simulations, we find that there are
three different regions of initial kink incoming velocity,
namely, pass, capture, and reflection (see Fig. 1), and a
critical velocity V. ==0.2678 (for ¢ =0.7) exists, such that
if the incoming velocity of the kink is larger than V., the
kink will pass the impurity inelastically and escape to the
positive direction, losing part of its kinetic energy through
radiation and excitation of an impurity mode. In this
case, there is a linear relationship between the squares of
the incoming velocity ¥; and the final velocity V: V7
=a(V?—V?), a being constant (a == 0.887 for e=0.7).

If the incoming velocity of the kink is smaller than V.,
the kink cannot escape to infinity from the impurity after
the first interaction, but will stop at a certain distance
and return back, due to the attracting force of the impur-
ity, to interact with the impurity again. For most of the
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FIG. 2. u(0,7) vs time in the case of resonance (V; =0.255).
Note that between the two interactions there are four small
bumps which show the impurity mode oscillation, and after the
second interaction the energy of the impurity mode is resonant-
ly transferred back to the kink.

velocities, the kink will lose energy again in the second in-
teraction and finally get trapped by the impurity (see Fig.
1). However, for some special incoming velocities, the
kink may escape to negative infinity after the second in-
teraction, i.e., the kink may be totally reflected by the im-
purity (see Figs. 1 and 2). This effect is quite similar to
the so-called resonance phenomena in kink-antikink col-
lisions [9-12]. The reflection of the kink is possible only
if the initial kink velocity is situated in some resonance
windows. By numerical simulation, we have found eleven
such windows. The detailed results are presented in
Table I and Fig. 3.

In order to understand the resonance structure, we
define the center of the kink, X(¢), as the point at which
the field function u(x,?) is equal to n. The final velocity

TABLE I. Centers of the resonance windows predicted by
Eq. (5), where T=27/Q = 6.707 is determined by Eq. (7) for
€=0.7. Numerical T2(Vx) is defined as the time between the
first and the second interactions. Note that T(V,+;)
—T»(V,) = 6.7 is just another expression of the resonance
condition (4). The resonance windows determined by numeri-
cal simulations are in very good agreement with the theoretical
predictions.

V, predicted Numerical Resonance

n by Eq. (5) T (V) windows

6 0.25498 42.5 (0.2548, 0.25505)

7 0.25842 49.2 (0.258 25, 0.2585)

8 0.260 64 56.2 (0.2605, 0.2607)

9 0.26215 62.8 (0.26205, 0.26222)
10 0.26323 69.5 (0.263 15, 0.26327)
11 0.26403 75.9 (0.263 95, 0.26408)
12 0.26463 82.8 (0.26461, 0.264635)
13 0.26510 89.6 (0.26510,0.26512)
14 0.26547 97.1 (0.26546,0.26547)
15 0.26577 103.3 (0.26577, 0.26579)
16 0.26602 109.9 (0.266 00, 0.26602)
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FIG. 3. Final kink velocity as a function of the initial kink
velocity (¢=0.7). Zero final velocity means that the kink is
captured by the impurity.

is averaged over a period of 20 time units. We define T,
as the time between the first and the second interaction;
more precisely, 7, is the time difference between the
first two instants at which the center of the kink is just at
the impurity. It is clear that the attractive potential
caused by the impurity falls off exponentially, so that us-
ing the same arguments as in Ref. [9] [see Eq. (3.6)], we
obtain an approximate formula to estimate T,(V),

a
where V is the kink initial velocity, a and b are two con-
stants. For €=0.7, the parameters are empirically deter-
mined by numerical data: a=3.31893, b=1.93. We
have found that the formula (3) is very accurate for the
velocities over the interval (0.12,0.267).

On the other hand, we have observed that the first
kink-impurity interaction always results in exciting the
impurity mode, and the resonant reflection of the kink
after the second interaction is just the reverse process,
i.e., to extinguish the impurity mode (see Fig. 2), when
the timing is right, to restore enough of the lost kinetic
energy, and to escape from the impurity to infinity.
Favorable timing in this case means that the occasion of
the second interaction coincides with the passage of the
impurity oscillation through some phase angle charac-
teristic of the impurity mode extinction. Thus the condi-
tion for restoration of the kink kinetic energy after the
second interaction ought to be of the form

T ,(V)=nT+1, 4)

T,(V)=

where T is the time between the first and the second in-
teraction, 7 is the period of the impurity mode oscillation,
7 is an offset phase, and n is an integer. By numerical
simulation we find that 7 = 2.3 for the case ¢=0.7.
Combining Egs. (3) and (4), we may obtain a formula
to predict the centers of the resonance windows,
11.0153 (5)

Vi=yi———C - =23 ...
" (nT+0.3)2

Similar formulas have been derived for kink-antikink col-
lisions [9-11]. From Table I, we see that this formula
can give a very good estimation of the resonance win-
dows.

However, we have not found resonance windows corre-
sponding to the index n=2,3,4,5; instead, quasireso-
nances have been observed when the initial kink velocity
is close to one of those predicted velocities: The second
interaction causes the kink to move even further away
from the impurity. Disappearance of these lower-order
resonance windows may be explained by radiation effects
during the interactions, because if the initial kink velocity
is small, it cannot restore enough energy for escape from
the attractive impurity. Higher-order resonances
(n>16) are also possible, but they are very narrow, so
we have not tried to detect them.

To describe the resonant effects theoretically, first of
all we note that the attractive impurity (¢ > 0) supports a
localized oscillating state, the impurity mode

uin(x,1) =a(r)e ~clxl2 (6)

where a(1) =agcos(Qr+6y), Q is the frequency of the
impurity mode,

a=(~—¢e%4)"2, @)

and 6y is a constant phase.

We shall analyze the kink-impurity interaction by the
so-called collective-coordinate approach taking into ac-
count two dynamical variables: the kink center X(¢) and
the amplitude of the impurity mode oscillation a(z).
Substituting the ansatz u =u; + u;, into the Lagrangian

L=f_wwdx{§‘urz”‘ sul—I[1—€e5(x)10 —cosu)}, (8)

in the lowest-order approximation, when the kink may be
considered as nonrelativistic (V¥?<1), and it is assuming
that @ < ¢ and a <1, we derive the following effective La-
grangian:

Lar=4X’+¢ "(a’— %) —UWX)—aF(X), (9)

where U(X) = —2¢/cosh’X, F(X)= —2esinhX/cosh2X,
and @ is defined in Eq. (7). The corresponding equations
of motion for the two dynamical variables are

8X+U'(X)+aF'(X) =0,

i+ 9%+ (e/2)F(X)=0. (10)

The system (10) describes a particle with the coordinate
X (¢) and mass 8 placed in the attractive potential U(X),
and coupled with the harmonic oscillator a(z). We have
solved Egs. (10) numerically with initial conditions
X(0)=—6, x(0)=V;; a(0) =0, a(0) =0, and indeed we
have observed similar resonance phenomena. In particu-
lar, for € =0.7, we find that there exists a critical velocity
V.=0.3546 above which the particle (kink) will pass the
potential well and escape to + oo, transferring part of its
kinetic energy to the harmonic oscillator (the impurity
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mode). Below the critical velocity the particle cannot es-
cape after the first interaction and will return back to in-
teract with the oscillator again. The particle may be res-
onantly reflected to — oo after the second interaction if its
initial velocity lies in certain resonance windows. In fact,
we find that system (10) possesses a very rich resonance
structure, and it is quite similar to the dynamical system
that arises in the phenomenological collective-coordinate
analysis of kink-antikink collisions in some nonlinear
Klein-Gordon equations [12].

Finally, we would like to point out that we have ob-
served similar resonance phenomena for the kink-impuri-
ty interactions in the ¢* model, ¢, — ¢ — [1 —€6(x)1(¢
—¢3)=0. The inelastic interaction of kink with an im-
purity was first discussed by Belova and Kudryavtsev
[15]. However, they totally ignored the impurity mode,
and tried to explain the resonance effects by energy ex-
change between the kink translational mode and its inter-
nal mode. We have studied the ¢* kink-impurity interac-
tions by intensive numerical simulation and found that
both the internal mode and the impurity mode take part
in the resonant interactions [16]. For example, at €¢=0.5
we have found six resonance windows below the critical
velocity V,.=0.185. We have observed that the reso-
nance structure in the ¢* kink-impurity interactions is
more complicated than in the SG model because the ¢*
kink has an internal mode which also can be considered
as an effective oscillator. We have developed a
collective-coordinate approach taking into account three
dynamical variables, and the detailed results will be re-
ported elsewhere [16].

In conclusion, we have described a new type of soliton-
impurity interaction when the impurity supports a local-
ized mode. In particular, we have demonstrated that the
soliton can be totally reflected by an attractive impurity if
its initial velocity is situated in certain resonance win-
dows. These resonance phenomena can be explained by
the mechanism of resonant energy exchange between the
kink translational mode and the impurity mode. We be-
lieve that the similar resonance phenomena might be ob-
served in other nonlinear systems supporting soliton exci-
tations.
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