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Orientational Order, Topology, and Vesicle Shapes

26 AUGUST 1991

F. C. MacKintosh and T. C. Lubensky
"'

Corporate Research Science Laboratories, Exxon Research and Engineering, Annandale, Ne~ Jersey 0880J
(Received 1 February 1991)

While ideal fluid membranes are characterized solely by curvature elasticity, many structural ("exter-
nal") properties of real membranes are strongly influenced by internal degrees of freedom. Here, we
consider, within mean-field theory, the effect of in-plane vector order (such as the molecular tilt in sur-
factant bilayers) on the shapes of closed vesicles with the topology of a sphere. We find that coupling
between in-plane order and Gaussian curvature causes continuous shape changes from spherical to cylin-
drical vesicles as the degree of in-plane order increases.

PACS numbers: 87.22.As, 02,40.+m, 64.70.Md

Two-dimensional Auid membranes occur in a wide
variety of physical and biological systems. They are of
fundamental physical interest, partly because they consti-
tute examples of random surfaces. They also have many
technological applications, such as in microencapsulation
and chemical separation. Vesicles, composed of surfac-
tant bilayers, are often used as model cell membranes.
Most theories treat Auid membranes as structureless
two-dimensional films, whose free energy depends princi-
pally on a local curvature tensor with constant bending
moduli for mean and Gaussian curvatures [ll. The
large-scale structural properties of many real membranes,
however, are strongly inAuenced by internal degrees of
freedom [2,3], such as density, relative concentration in
two halves of a bilayer, or molecular orientation. This in-

terplay between internal degrees of freedom and structure
is believed to be responsible for the stability of mixed-
surfactant vesicles observed in recent experiments [4] and
for the formation of certain biological structures, such as
tubules [5]. In this paper, we investigate shape changes
in closed vesicles brought about by the development of
orientational order in the Auid membrane of which they
are composed. Within the mean-field approximation we
use, shape changes occur continuously below a second-
order phase transition.

Two-dimensional Auid films can exhibit various kinds
of order, including quasi-long-range orientationaI order
in the absence of positional order. Free-standing liquid-
crystal films provide experimental examples of Aat mem-
branes that exhibit a variety of distinct thermodynamic
phases characterized by varying degrees of quasi-long-
range order (QLRO), including molecular tilt [6]. In the
smectic-A (Sm-A) phase, the Frank director n, specifying
the direction of average molecular alignment, is parallel
to the unit vector N, normal to the plane. There is no
in-plane positional order, and the film is essentially a
two-dimensional fluid. In the smectic-C (Sm-C) phase, n
develops a nonvanishing component m perpendicular to
N. This is depicted in Fig. 1 for a curved membrane.
The component m represents an in-plane vector order pa-
rameter in the Auid. Thermal Auctuations destroy long-
range order in m. The correlation function (m(r) m(0)),
however, dies as a power law in r at large separations,

and the two-dimensional Sm-C phase is characterized by
QLRO, rather than long-range order. In the hexatic
phase [7], there is a power-law decay in the bond-angle
order parameter, y6=e ', where 8 is the angle (relative
to some axis) of a bond formed by nearest-neighbor mole-
cules. Sm-F, Sm-I, and Sm-L phases exhibit both hexatic
and Sm-C order [8].

Noninteracting phospholipid bilayers in water provide
another example of nearly Aat two-dimensional films. In
the L, phase, these bilayers exhibit Sm-A order, whereas
in the Lp phases, they exhibit Sm-F, Sm-I, or Sm-L order
[8]. Under appropriate conditions, phospholipid bilayers
in either the l. or Lp phases can form closed vesicles [9].

Orientational order within a curved Auid membrane is
coupled to the local geometry of the membrane and is
strongly influenced by its global topology. This interplay
between orientational order and the local geometry of a
Auid membrane can have dramatic consequences for the
structure and phase behavior of Auid membrane systems.
Two-dimensional orientational order in a Aat film, such as
that of a Sm-C or a hexatic, becomes tangent-plane order
in a curved surface. Gaussian (intrinsic) curvature intro-
duces elastic deformations in the orientational order pa-
rameter and leads to an increase in the free energy of the
membrane. Thus, tangent-plane order tends to expel
Gaussian curvature, and vice versa. A particular mani-
festation of this eflect is the reduced crumpling of a hex-

FIG. 1. Smectic-C order within a Auid membrane arises
from a tilt of the constituent molecules (represented by the solid
oval and unit director n) relative to the unit surface normal N.
The surface component, m =n —(N n)N, represents a vector
order parameter defined in the tangent plane perpendicular to
N.

1991 The American Physical Society 1169



VOLUME 67, NUMBER 9 PHYSICAL REVIEW LETTERS 26 AUGUST 1991

atic membrane compared with a disordered fluid mem-
brane [10].

The global topology of the surface has a profound
effect on the interplay between orientational order and
curvature, and thus on shape. The Euler number of a
sphere is 2, and the total vorticity of a tangent-plane or-
der parameter on its surface is 2 [11]. Like vortices repel
each other. Thus, there will be two antipodal strength-1
vortices on a spherical membrane with vector order. Be-
cause the minimum vorticity of a hexatic field is —, , a
similar membrane with hexatic order will have twelve
vortices at the vertices of an icosahedron in its ground
state [12]. Additional vortex pairs will be created at
finite temperatures, eventually leading to a Kosterlitz-
Thouless transition [13,14].

In this paper, we investigate the simplest model of
tangent-plane order that will lead to shape changes.
From the above discussion, it is clear that the lowest-
energy configuration for a spherical vesicle is character-
ized by order which is a maximum around the equator
and zero in the disordered regions (vortex cores) located
at opposite poles. The tangent-plane order at the equator
tends to expel Gaussian curvature. Thus, the intrinsic
curvature (the integral of which is a topological invari-
ant) is increased in the disordered regions near the poles.
As the temperature is lowered, the surface will become
more and more cylindrical (for which the Gaussian cur-
vature is zero) with decreasing radius and smaller vortex
core regions. This is illustrated in Fig. 2. The elongated
shape is shown, together with the corresponding (unnor-
malized) vector order parameter on the surface. In order
to keep our treatment as simple as possible, we will as-
sume that the vesicle is permeable so that it has only a
surface energy and no volume energy, which, for exam-

F„,= d'x( —, pm'+ —,
' Xm')

and

Fv„=—, c„dx(6,ns6, nt, )6„6bs (2)

is the two-dimensional Frank free energy. Here, p —T
—T, and 6„=6„—N N, . For simplicity, we have
used a single Frank elastic constant c. Throughout we
shall make use of the convention that repeated indices are
summed over.

Positions on a two-dimensional surface are specified by
a three-component vector X(a) that is a function of the
two-dimensional surface coordinate cr. The vectors e,
=aXiaa' form a basis for the tangent plane to the sur-
face at n., whose metric and curvature tensors are, respec-
tively, g,& =e, . et, and K,t, =N B,ez. Furthermore, the
area of a surface element bounded by da''e] and der e2 is

i el x e2i da' da =Jg da' da, where Jg =
i detg, q i

'

The free energy of an ideal fluid membrane with fixed
area is dominated by its curvature energy [1]

pie, might arise from a pressure difference across the vesi-
cle membrane.

Our calculations are based on a phenomenological
model on a fluctuating surface of arbitrary curvature.
Consider, for example, the generalization of the Sm-
3-to-Sm-C transition in a flat film. In the Sm-C phase
of liquid crystals, the orientational order is manifested in

the microscopic tilt of the constituent molecules relative
to the smectic plane. As depicted in Fig. 1, we let n
denote the Frank director and N the surface normal. The
order parameter is m, which is defined by n=coN+m,
where m N =0 and co =1 —m . The two-component
field m is then a tangent vector. A Landau-Ginzburg free
energy for the Sm-3-Sm-C transition in a flat film is
then F =F„,+Fv„,where

F,„„=—,
'

K Jg d a(TrK) + —, xa Jg d a(detK),

where v is an extrinsic curvature modulus with units of
energy and K~ is the Gaussian curvature modulus. The
mean-curvature term tends to stabilize the vesicle against
fluctuations or changes in shape, while the second term is
a topological invariant for surfaces with fixed Euler num-
ber and can be ignored in our present calculation.

The generalization of Eq. (2) to lowest order in m on a
curved surface is

FIG, 2. In this view of an elongated vesicle, the tangent-

plane order parameter corresponding to the represented shape
has been depicted by the arrows. The tangent-plane order pa-
rameter is dimensionless, and its normalization has been chosen

for clarity of presentation.

Fv„=—,
' c Jg d a(D, m D'mq 2KgD, m +KgK, ) . —

(4)

There are corrections to this expression arising from gra-
dients of m, which are of order m times each of the three
terms. Here, m =m e„and D m'=Q, m'+I,'bm is the
covariant derivative, where 1,'b =e'6 eb is the aftine
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connection. In this covariant notation, indices are
"raised" and "lowered" with the metric g,b and its ma-
trix inverse g'; e.g. , Kb =g"Kb, . The last two terms
come from gradients in the normal component of n. The
third term represents an efI'ective bending rigidity of the
membrane, which renormalizes the bending modulus x.
The second term reAects the fact that, by bending, the
membrane is able to relieve stresses due to gradients in n.
This provides an explicit coupling between curvature and
the spatial variations in m. In this work, we shall focus
on the first term, which is simply a generalization to a
curved surface of the square gradient term in m. Such a
term is common to all models which are characterized by
a tangent-plane vector order parameter.

Because of the implicit coupling of the vector order to
Gaussian curvature through the covariant derivatives, the
development of order favors changes in the shape of vesi-
cles. This competes with curvature energy terms, which
favor uniform curvature. In order to study this competi-
tion, we consider the following simplified free energy:

F = Jg d'o [ —, cD,m "D'mb+ —,
' pm'm,

+ —, Z(m m, ) '+ —,
'

K (TrK) '] . (5)

This energy is identical to F„,+F„„+Fvnin Eqs. (1),
(3), and (4) without the KgD, m" term and the topologi-
cally invariant Gaussian-curvature term. We shall treat
K and e as independent phenomenological parameters, al-
though in specific models such as Eq. (4) they may be re-
lated. To carry out an explicit minimization of F, we find
it convenient to use the spin connection for the covariant
derivatives. Let E~(cr) and E2(o) form an orthonormal
basis for the tangent plane at a.. In this basis, the order
parameter can be expressed in the noncovariant form,
m=m~, &E„where m~~&=m(o)cosa and m&2&=m(o)
xsine. Here, a is the angle between El and m. In this
representation, the square-gradient term becomes

D, m "D'mb =8'mB, m+g'"m (B,a A, )(r—)ba —Ai, ),
where 2, =E~ t), E2. The spin connection [10]
expresses the gauge invariance of D, m D'mb, under
redefinition of the basis [E,j. In the disordered phase,
the vesicle assumes a spherical shape. We choose coordi-
nates [cr'j corresponding to the usual polar and azimu-
thal coordinates [0,&j. We shall characterize the surface
of the membrane by X(8,&) =R(0, &)r". Without loss of
generality, the lowest-energy state can be chosen such
that the vector field is azimuthally symmetric and van-
ishes at the poles: 0=0,~. In the natural "gauge, "corre-
sponding to E

~

=8 and E2 =p, a is constant. In other
words, the vector field has a fixed orientation relative to
the familiar latitude and longitude lines, and the magni-
tude of the field is a function only of the polar angle 0.
Furthermore, the solution is symmetric about 0 =+/2.

Because of their symmetry, the order parameter m (8)
and shape function R(8) can be expanded in the (associ-

ated) Legendre series

and

m (8) = g m p&
—

~ P2& —] (cos0)
j=l

R(0) =Ro 1+ g p2JPq~(cos8)
j—l

(7)

In equilibrium, the free energy F is a minimum with

respect to [Ro,m ~, m3, . . . , pq, p4, . . .j, subject to the con-

straint of fixed area, A =fJg d o. One can easily ex-

press Ro as a function of A and [p2~j. Thus, F can be ex-

pressed as a function of [A,m~, m3, . . . , p2, p4, . . .j. The
contributions to F from curvature and gradients in I are
independent of area. The remaining part of F can be
written as

m (0) =m o t an h [(sin 8)/&1 . (10)

Here, R(0)( is the correlation length, which diverges
near p =p„.Equation (5) is then minimized with respect
to [mo, g, p2, p4, . . .j, subject to the constraint of fixed area
A. The results are shown in Fig. 3, where m(n/2), pq,
and p4 are plotted versus p. In the disordered phase, for

p &p„the vesicle assumes a spherical shape. Below the
transition, the vesicle shape becomes increasingly cylin-
drical in nature.

We have presented here a simple model for tangent

pvgdo —m+ —m
fJgd'a" 2 4

where the factor multiplying A is a function only of the

[p2, j.
Near the transition, the j=1 modes dominate. The en-

ergy can be evaluated analytically for sma11 ml and p2,
subject to the constraint of fixed area, with the result that

F——(I +p)m ~
+—Xm ~

——
pram ~

+ pq, (9)2 - 4 4 2 36~
e 5 5 Se

where p =Ap/4xc and X=AX/4xc. Note that the tran-
sition temperature has been depressed below its value for
a Oat membrane, i.e., p, &0, by an amount proportional
to A, which vanishes in the thermodynamic limit.
This is because the mode for which m is a constant can-
not order on a sphere. The coupling of the shape to the
order in the membrane leads to a continuous change in

shape. For p ~p„m~
=5(p, —p)/4k and p2=cm/18K.

Equation (5) can be evaluated numerically for arbi-
trary single-valued functions m(8) and R(8). We use a
variational approach to find the minimum of Eq. (5). We
parametrize the shape function R(0) as in Eq. (7). For a
given shape R(8), minimization of Eq. (5) with respect
to m(8) is equivalent to solving a nonlinear differential
equation for m(0). The solution of this differential equa-
tion can be closely approximated by the following two-
parameter variational function:
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I I I I vortices, and couplings between these and the vortex posi-
tions must be considered.
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FIG. 3. The eA'ect of vector order on the shape of vesicles.
The magnitude of the order parameter at the equator, m(tr/2),
is shown as a function of p/X. The resulting change in shape is
characterized by the coefficients pi, , as defined by Eq. (7).
Only p. and p4 have been plotted here, although the numerical
minimization was performed through p[]. Near the transition,
pi —m'. The shapes R(9) for three specific values of p/X are
drawn to the same scale. These results were obtained for X =10
and tr/c =0.1.

plane order in a vesicle with spherical topology and shown
within mean-field theory how the development of such or-
der leads to a change in the vesicle's shape. Clearly, it is
important to determine how Auctuations will modify this
result. At temperatures below the Kosterlitz-Thouless
[13] (KT) transition of the surface, the shape of the equi-
librium surface will be similar to that predicted here.
Since there is a logarithmic repulsion between vortices,
Auctuations in the positions of the vortices will be small.
Above the KT transition, the repulsion between vortices is
screened and Auctuations in the vortices will increase.
For large Auctuations, the shape will be more spherical.
If the internal volume as well as membrane area is fixed,
shape changes can only occur if there is excess area. In
this there are P2 fluctuations [15] even in the absence of
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