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Exactly Solvable Model of Interacting Particles in a Quantum Dot
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A simple, yet physically reasonable, model is presented which describes an arbitrary number of in-
teracting particles in a quantum dot. Exact analytic expressions are obtained for the energy spectrum as
a function of particle number and magnetic field.
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Recent progress in semiconductor technology now al-
lows the fabrication of zero-dimensional structures, called
quantum dots [1-8], where islands of two-dimensional
electrons are laterally confined by an imposed potential.
The number of electrons in a quantum dot can be varied
over a considerable range, and recent far-infrared absorp-
tion [1-3], capacitance spectroscopy [5], and conduc-
tance [8] measurements have yielded data with rich
structure. However, a full understanding of the experi-
mental results requires knowledge of the many-electron
energy spectrum for a quantum dot. The few existing
theoretical treatments of the energy spectrum have been
computationally intensive and have employed either the
Hartree approximation [9]; whose neglect of exchange
and correlation effects may be significant in quantum dots
[10],or direct numerical diagonalization [11,12], which is
limited by convergence problems to treating just a few
((6) electrons. In this Letter we present a simple, yet
physically reasonable, model which describes a quantum-
dot system that contains an arbitrary number of interact-
ing particles. The many-body problem is solved exactly,
yielding analytic expressions for the energy spectrum as a
function of external magnetic field and particle number.
By obtaining exact solutions we automatically include all
the effects of exchange and correlation.

The two features of the present model which permit an
exact, analytic solution of the many-body problem are as
follows. (1) The bare (i.e., unscreened), two-dimensional
confining potential V(r;) for the ith particle is taken to be
parabolic. It has been shown theoretically that for elec-
trons contained in a parabolic potential there is strong ab-
sorption of far-infrared light at the frequency correspond-
ing to the bare parabola [13-17]. This theoretical pre-
diction is consistent with recent experimental measure-
ments on quantum dots [4]. Further evidence that the
bare potential in many quantum-dot samples is close to
parabolic is provided by simple electrostatic models [18].
(2) The interaction potential V(r;, ri) between particles i
and j moving in the two-dimensional confining potential
in the x-y plane [191 is taken to saturate at small particle
separation and decrease quadratically with increasing
separation. The interaction between two electrons in free
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space would, of course, vary as
I r; —ri I

'. However, in
quantum-dot structures, the form of V(r;, rj) is modified
in a nontrivial way by the presence of image charges in
adjacent layers of gates. Furthermore, the wave func-
tions of the electrons confined in the quantum dots have a
small but finite extent perpendicular to the x-y plane
[19]. This results in a slight smearing of the electron
charges along the perpendicular (z) direction. Hence the
interparticle repulsion will tend to saturate at small inter-
particle separations. We choose as our model for the in-
teraction

V(r;, rj ) =2VD —
—,
' m* 0 Ir; —rj I

where m is the particle effective mass; Vo and 0 are
positive parameters within the model. Reasonable values
for Vo and Q will be discussed later in the Letter.

We consider a parabolic quantum dot in the x-y plane
[19] in the presence of a magnetic field B along the z
axis. The dot contains N interacting particles (e.g. , elec-
trons) with charge —e where e is positive, g-factor g*,
spatial coordinates [r;},and spin components [s, ;} along
the z axis. The total Hamiltonian H can be written as
H=H»,.«+H»l„, where H, ] „. «and H, [;„only depend on
spatial and spin coordinates, respectively [20]. Explicitly,
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where the momentum and vector potential associated
with the ith particle are given by p; =(p; „,p; ~) and A;
=(A; „A;~), respectively, and pz is the Bohr magneton.
The eigenstates of H can be written as the product of spa-
tial and spin eigenstates obtained from H, ~,. „and H»;„,
respectively. The z component of the total spin Sz is
equal to g;s;, and represents a good quantum number
for the system. Choosing a circular gauge A; =B(—y;/2,
x;/2, 0), Eq. (2) becomes

——m*n'Ir; —r, I' + (4)
i
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where coo(8) =coo+co, j4, co, =eBlm*c, and the z component of angular momentum for particle t' is given by
L;, =x;p;~ —y;p; „. We now make a transformation to center-of-mass and relative coordinates using the following
transformation:

R=(X,Y) =—gr;, P =(P~,Py) =gp;; r;, =(xj,y;j) =r; —rj, p;j =(pj „,p;j y) =p; —pj.1

I

(s)

This transformation replaces the 2N coordinates of the initial system by 2[1+(N/2)(N —1)] coordinates. Now H, p„,
can be cast into a convenient form by defining the following center-of-mass mode raising (A+,8+) and lowering

(A,B ) operators:
i ]/2

[Nm *coo(8) (XT iY) + i (P + P )],
4Nm*hcoo 8

i t/2

1

4m* h Qp

8 = [Nm cop(8)(X +iY) -ti(P~+ Py)],
4Nm *h cop 8

and relative mode raising (aij+, bij+) and lowering (a;~,b;, ) operators (iAj)
1/2

[m*Ap(xij + Ipj() '+ i(pij x W lpij y)']

' 1/2

[m* +o(xij —0'ij ) +' i(pijx —~,pijy')],

[a,J aki ] [b J,bki ] =conj/(i,

where c;~pI =2 if i =k and j=l; c;~I,I = —2 if i =l and j=k; e;~kI =1 if i =k but j~l; c;~k( = —1 if i =l but j&k; and

c ji, i =0 if i &k, I and jul, k. Equation (4) can now be written equivalently as
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where

b
1

4m*A Op

where Op=[coo(8) —NO ]'j. We take coo&N'j 0 so that all N electrons reinain confined to the dot (i.e. , Ap) 0) for
all values of 8 (see later). These center-of-mass and relative mode ladder operators satisfy most of the usual commuta-

tion relations, e.g. , [A,A+] =1 and [A —,a~j
—. ] =0. However, the difference lies in the relative mode ladder operators

which do not fully commute among themselves. In particular,

H, = h cop(8)—
2

A+A + hcoo(B)+ 8+8 + hcoo(8)

H„,i= hQo — ——g ao aj + hAp+ —g bij bij +(N —1)hAp+N(N —l)Vp.hcoc 1 toe 1

Note that the total Hamiltonian H ( =H, ~,„,+H, ~;„) and the commutation relations for the ladder operators can equal-

ly well describe N interacting fermions or bosons.
We now investigate the eigenvalues and eigenstates corresponding to H, ignoring for the moment any requirements on

the symmetry of the eigenstates under exchange of two particles. Consider a particular eigenstate ~O, Sz) of H corre-
sponding to a total spin Sz and eigenvalue Ep(Sz), and with the additional property that DIiO, Sz) =0, where D is a;j,
b;~, A, or 8 . The (unnormalized) spatial part of )O, Sz) is given by

Nm *coo(8)
exp — (X + Y ) exp

2

no g (xi' +Pij)2%6
(10)

and the eigenvalue is given by

Eo(Sz) = hcoo(B)+ (N I )h&o+N(N 1)Vo (g*m*j'2mo)coeSz . (»)
It can be shown that states of the form (A+) "(8+) '~O, Sz) are eigenstates of H and correspond to a ladder ofIV~ + NB
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center-of-mass modes with eigenvalue Ep(sz)+N~[Acoo(8) —hro, /2]+N~[hcop(8)+hro, /2]. These eigenvalues de-
pend only on the frequency of the bare parabola and the cyclotron frequency, and are independent of the number of
electrons in the quantum dot. As a result of the curious commutation relations in Eq. (8) the energy spacing for the
ladders of relative modes is not immediately obvious. Consider the excitation described by ai2 lO, sz). Using Eq. (8) it
follows that

Ha i2 lo, sz& =Eo(sz)a 1210,sz&+ —6 tio—1

Since a 1k
—a2k =a (2, we have+ + +

2a12 + X (a lk a2k ) IO»z& .
k&2

(i 2)

Ha 12 I O.Sz &
=Eo (Sz )a i 2 I O Sz & +

N
ii i1o—1

2
[2a ~+2+ (N —2)a A] lO, Sz&

= E.(Sz)+ t np
c

2
air lO, Sz&. (i3)

The state a|2 lO, Sz) is therefore an eigenstate of H. It can similarly be shown that a ladder of relative modes for each
pair of particles i and j can be generated by products of a~j+ and b~j+ The .eigenstates of the total Hamiltonian H are
therefore given by

(w ')""(8') ' Q ( +) "(b ')"lo, sz&, (i4)

where N~, Nq, a;J., and P;J are positive integers. The corresponding eigenvalues are given by

E =Eo(sz ) +No h [ri)o (8) rp, /2] +Ne 6 [rpo (8) + ro, /2] + g [a;, lri ( tip —co,/2) +p~i fi (ti p+ ro, /2) ] . (is)

It is clear from Eq. (1S) that the ordering of the energy
l

levels will depend on the relative strengths of ro, (i.e.,
magnetic field), cop (i.e., the parabolic potential), 0 (i.e.,
the interaction potential), and N (the particle number),
thereby yielding a rich crossing of levels as these parame-
ters are varied [21]. The state lO, Sz) corresponds to the
lowest-energy state for a given total spin Sz.

So far we have calculated the energy of the states
without regard to the fermionic or bosonic character of
the individual particles. The special symmetry of the
wave function is an additional requirement which selects
the physically meaningful eigenstates from among the
much larger number of mathematically possible solutions
in Eq. (14). The properly symmetrized states corre-
sponding to particles of given statistics are easily iden-
tifiable by noting that (I) a~j+ = —aj+; and b;z = —

b~,
—

under interchange of spatial coordinates for particles i

and j, whereas A —and 8 —remain unchanged, and (2)
lO, Sz) is symmetric under interchange of spatial coordi-
nates of any two particles. For N fermions of spin

only states that are antisymmetric under interchange of
two particles are allowed. In a large magnetic field, the
lower-energy eigenstates will be completely spin polar-

ized, yielding Sz =Nb/2. Since the spin state is totally
symmetric, the corresponding spatial states must be an-

tisymmetric. Hence in Eq. (14), N~ and Nz can take

any values while the sum a;~+P;1 would be chosen to be
an odd integer for each pair i and j. From Eq. (14), the

state

Qa;,+lO, S &

i &j
is the lowest-energy state for large magnetic field
(Sz=Nh/2) and has a corresponding energy given by
Eq. (is),

ro, +N(N —1)Vp.E = ii rpo(8)+ —(N 1)(N+2) Qp NN I+—1 1 g Pl

2 4 Pl 0

It is interesting to note that the spatial part of the corresponding wave function is given by

Q (x;, iy;, ) 'exp—Nm coo(8)
2A,

(4' + Y ) exp 2+ 2Z (xij +yij)
2NQ i &j

which represents a simple generalization of the Laughlin
trial wave function. A full discussion of this result will be
presented elsewhere [21]. As the magnetic-field strength
8 is reduced, competition from other spatial states
(Sz =NA/2) leads to a rich crossing of energy levels
which depends on particle number N. For example, for

three spin-polarized particles the state described by
ai+2b23 (and its permutations) becoines lower in energy
than a~qa23a|3 when ro, ( [I/2(cop —30 )] ' . States
with Sz & Nh, /2 compete for ground-state status as 8 is
further reduced [22], and at 8=0 states with the same
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spatial wave function but diA'erent Sz can become degen-
erate. For three weakly interacting particles, the 8=0
ground state is fourfold degenerate and corresponds to a
linear combination of a;i+'s. For a system of N bosons
with spin 1, only states that are symmetric under inter-
change of two particles are allowed, and iO, Sz) with
Sz =N 6 is the lowest-energy eigenstate. The corre-
sponding energy is given by Eq. (11) which yields Nhcoo
as the interaction and magnetic field are turned off', as ex-
pected for N independent oscillators.

Obviously the model electron-electron interaction
V(r;, ri ) is not correct for all electron separations
r = ir; —rt i, but the interaction parameters can be adjust-
ed to give the best fit to the true interaction for the dom-
inant range of r, which will increase with N. Equation
(1) implies V(r;, rt) )0 (i.e., repulsion) only if r & r„
where r, =2 Vot /(m *0 ) 't . In order for the model to
be physically reasonable, r, should be greater than the
typical electron-electron separation r implied by the wave
function in Eq. (17) h.e. , r = (N 6/2m *Qo) 't ]. Choos-
ing A 0 =5.6 meV, Vo = 10 meV, and 6 coo = 15 me V (see
Ref. [8]) for a GaAs quantum dot yields a reasonable fit
to the true electron-electron interaction for r ( r„where
r, =350 A, and implies that up to seven electrons will

remain confined to the dot at B=0 (i.e., Qo&0). It is
reassuring to see that even when the dot is full (N=6),
r ( r, over the B fields of interest (r = 108 A at 30 T and
r =220 A. at 0 T).

An interesting prediction of the present model is the
weakening of the magnetic-field dependence of the N-
electron energy levels due to the electron-electron interac-
tion, which is in qualitative agreement with recent experi-
mental data of Ref. [8]. In addition, the present model
for N=2 electrons gives results within 30% of the full
Coulomb calculation of Ref. [12] for the lower-lying en-
ergy levels [21].

Although the experimental dots of interest [1-8] are
quasi two dimensional [19], dots with more three-di-
mensional character could be treated theoretically by in-
troducing a parabolic confinement in the z direction, and
making a suitable choice of Vo and 0 for the dominant
range of r [21]. In addition, experimental dots with non-
parabolic confinement can be described using a perturba-
tion theory based on the exact many-body solutions
presented here. This leads to hybridization of the
center-of-mass and relative modes [21].
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