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Computer Simulation of Polymer-Induced Clustering of Colloids
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We have developed a novel computational scheme that allows direct numerical simulation of
polymer-colloid mixtures at constant osmotic pressure. Using this technique, we have studied the entro-
pic attraction that is caused by ideal polymers dissolved in a simple (hard-sphere) colloidal dispersion.
In particular, we studied the nonpairwise additivity of the polymer-induced entropic interaction. The
present simulations show that the nonpairwise additivity has a pronounced effect on the structure of a

polymer-colloid mixture.

PACS numbers: 61.20.—p, 02.70.+d, 82.70.—y

The addition of a small amount of free polymer to a
colloidal dispersion induces an effective attraction be-
tween the colloidal particles and may even lead to coagu-
lation. Experimentally, this effect has been studied ex-
tensively [1] and qualitatively it is well understood [2].
The polymer-induced attraction between colloids is essen-
tially an entropic effect: When the colloidal particles are
close together, the total number of accessible polymer
conformations is larger than when the colloidal particles
are far apart. However, although this mechanism ex-
plains polymer-induced clustering qualitatively, a quanti-
tative description of this phenomenon is difficult. One
reason for this is that the polymer-induced attraction be-
tween the colloidal particles is not pairwise additive, par-
ticularly when the radius of the colloidal particles and the
“size” of the polymers (given by its radius of gyration)
are of the same order of magnitude. Moreover, the
polymer-induced attraction depends both on the osmotic
pressure of the polymer and on the concentration of the
colloid; yet in the theoretical description of polymer-
induced clustering [2], the effect of the polymer is usually
replaced by an effective, density-independent, pairwise
additive interaction between the colloidal particles. In or-
der to test the range of validity of this approximation, it
would clearly be desirable to carry out “exact” numerical
simulations of a simple model for a colloidal dispersion in
osmotic equilibrium with a polymer reservoir. Yet, even
when one considers only the very simplest model, viz.,
that of a mixture of hard-core colloidal particles and
ideal chain molecules with conformations that are re-
stricted to a lattice, the computational problems are still
formidable. What is required is a numerical scheme that
samples the positions of the colloidal particles while
averaging over all possible conformations of a large (and
fluctuating) number of chain molecules. The “conven-
tional” Monte Carlo schemes to simulate lattice models
of polymer systems [3] would be inadequate for such a
calculation.

In this Letter we show that it is possible to simulate
polymer-induced attraction in a simple model for a
polymer-colloid mixture, by extending a technique that
was originally developed in a totally different context [4].

This approach to simulate a polymer system relies on the
fact that we can recursively compute the partition func-
tion of an ideal (non-self-avoiding) lattice chain in an ar-
bitrary external potential [5]. This is most easily seen by
considering a chain of length / — 1 on a lattice. The total
number of accessible ideal chain conformations that ter-
minate on lattice site i is denoted by w;—(i). The total
partition function of a single ideal lattice chain of length
I—1, Q;—,, is equal to X;w;— (i), where the sum runs
over all lattice sites. The total number of chain confor-
mations of length / that terminate on site i is clearly
equal to the sum of the total number of chains of length
I—1 that terminate on any of the neighbors of i, multi-
plied by the Boltzmann factor associated with site i. If
we assume, for convenience, that the external potential is
either zero or infinite, the Boltzmann factors are just one
or zero, respectively. This reasoning leads to a recursive
scheme, that allows us to exactly compute the partition
function Q; in an arbitrary external potential. This
scheme can be used as a starting point to study self-
avoiding polymers [6,7], but for the present purpose we
limit ourselves to ideal polymers.

Up to this point we have not specified the nature of the
external potential. We now assume that this potential is
due to the presence of N hard-sphere colloidal particles,
each of which occupies many lattice sites. Then the poly-
mer partition function clearly depends on the coordinates
rV of the colloidal particles: @;(r"). The configura-
tional part of the partition of the system of N colloids
plus one polymer of length / in volume V is then given by

z(V,N,1)=derNe “UnM g (M) (1)

where Uy (r”") denotes the hard-sphere interaction. Here
we have defined the unit of energy such that kg7 =1.
Next, we make use of the fact that we are considering
ideal polymers. In that case we can immediately write
down the corresponding partition function for NV colloids
and M ideal polymers:

ZWV,N,M) =fydr”e U0, MMM, (2)

where the factor 1/M! accounts for the fact that the poly-
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mers are indistinguishable. Using Eq. (2) it is straight-
forward to transform to an ensemble where the polymer
chemical potential u (i.e., the osmotic pressure) is kept
fixed. The corresponding grand-canonical partition func-
tion is given by

EW,N,u)= Y, eMZ(V,N,M)/M!
M=0

- N N
=deI'N€ Ups(r )ezn,(r ). 3)

In the last line of Eq. (3), we have introduced the poly-
mer fugacity z=e*. The important point is that Eq. (3)
allows us to evaluate the properties of the colloidal parti-
cles in osmotic equilibrium with a polymer reservoir. In
particular it shows that we can perform Monte Carlo
sampling of the colloidal particles. The presence of the
polymers only affects Ucz(r"), the effective interaction
between the colloidal particles:

Ueﬁ(l'N)EUhs(l'N)—ZQI(rN) . @)

where zQ,;(r"¥) measures the entropic interaction be-
tween the colloids due to all possible polymer conforma-
tions. This entropic interaction is not pairwise additive;
the “many-body” part of @,;(r") is due to the exclusion
of polymer conformations that would have intersected
three or more colloidal particles. For what follows, it is
of interest to estimate how well the entropic interaction
Q,(t™) can be approximated by a sum of pair interac-
tions. To describe this, we write the entropic interaction
Q,;(r™) as a sum of irreducible one-, two-, three-, and
many-body contributions:

o=, =2a/@)+ X 0/ ,r))

pairs
i<j
+ Z ﬁf(r,-,rj,rk)+ Tt (5)
triplets
i<j<k

here @¢ denotes the (ideal) polymer partition function
when there are no colloidal particles present. The terms
on the right-hand side of Eq. (5) are defined as follows.
The one-body contribution Q} denotes the number of
polymer configurations that are excluded by one colloidal
particle. This contribution is approximately constant, as
it does not depend on the position of the colloidal parti-
cles, except for small variations due to the discreteness of
the lattice. The two-body contribution Q7 is defined as
minus the number of polymer conformations intersecting
with two colloidal particles, and corrects for the fact that
the one-body contribution counts these polymer confor-
mations twice. The three-body contribution Q; is defined
as the number of polymer conformations that intersect
with three colloidal particles simultaneously. The latter
term corrects for the fact that the three-body contribu-
tions in the one- and two-body terms cancel exactly.
Before studying the properties of an N-body colloidal
dispersion, we first consider the pure two- and three-body

contributions to the entropic interaction. These can be
computed directly by considering separately systems of
two or three hard-sphere colloidal particles. We chose
the diameter o of the colloidal particle to be much larger
than the lattice spacing (o =10.5, in units of lattice spac-
ing of a simple cubic lattice). We consider both “short”
(1=10 lattice spacings) and “long” (/=50) polymers. A
measure for the size of the polymers is the radius of gyra-
tion s. For free /=10 and /=50 polymers these are
s10== 1.3 and s50== 2.9, respectively. Figure 1 shows the
normalized two- and three-bod entrog)ic contributions
Qi [=07/(6'rc’/6)] and Qi [=0;/(6'75/6)]1 for
short and long polymers, as functions of the distance be-
tween the colloidal particles. Clearly, the two-body con-
tribution yields an effective attraction between the col-
loidal particles. The three-body contribution Q7 is repul-
sive and decreases rapidly with increasing distance. For

1 1.5 2
r/o

FIG. 1. Normalized two- (circles) and three-body (triangles)
contributions to the polymer-induced interaction between
hard-sphere colloidal particles with diameter c=10.5 (in units
of lattice spacing of a simple cubic lattice), as functions of dis-
tance r between the colloidal particles. The two-body contribu-
tion 03 was obtained by considering a system of two colloidal
particles. The three-body contribution @i was obtained by
considering a system of three colloidal particles in a equilateral
configuration. The upper (lower) figure applies to polymers
confined to a cubic lattice with length /=10 (/=50) lattice
spacings. The error bars indicate the inaccuracy in the mea-
sured contribution. This error is a result of the discreteness of
the lattice. The solid lines are drawn as a guide to the eye. The
dashed line represents the theoretical result [8] for the
Asakura-Oosawa model [9].
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the short polymers (! =10) the three-body contribution is
negligible, as the polymers are too short to intersect with
three colloidal particles simultaneously. In contrast, the
long (/=50) polymers give rise to a significant three-
body contribution.

In the same figure, we have also indicated the theoreti-
cal prediction for the two-body contribution by Gast,
Hall, and Russel [8]. This prediction is based on the
Asakura-Oosawa (AS) model [9]. In the AS model both
the colloidal particles and the polymers are represented
by hard spheres. The colloidal spheres cannot overlap
with one another or with the polymer spheres, but the
latter can interpenetrate. In order to compare the numer-
ical results for our model with those for the AS model, we
have chosen the two-body contribution obtained for the
AS model such that both agree at r =o0. From Fig. 1 we
see that the two-body contribution obtained for the AS
model agrees qualitatively with our numerical results, but
has a somewhat shorter range. This is due to the fact
that there is a significant number of polymer conforma-
tions that have a spatial extent larger than the diameter
of the sphere representing the polymer in the AS model.

Next we consider a many-body colloidal dispersion in
osmotic equilibrium with a polymer reservoir. We per-
formed simulations for systems consisting of 108 hard-
sphere colloidal particles with diameter o=10.5, with
both short (/ =10) and long (/ =50) polymers. The sim-
ulations were performed at constant volume and osmotic
pressure, using the effective polymer-induced colloid in-
teraction given by Eq. (4). Periodic cubic boundary con-
ditions were used. The length of the simulation box was
taken to be an integer multiple of the lattice spacing.
Each simulation consisted of 10000 Monte Carlo cycles,
excluding equilibration. Simulations were performed at
two values of the reduced polymer fugacity: z* =0.01
and 0.02. Here z* is defined as z* =z X zjq4, with z;4=6".
These values correspond to low polymer concentrations,
with less than 10% of all lattice sites occupied by poly-
mer. The density of the hard-sphere colloidal particles
was 56% of regular close packing. This is some 15%
below the freezing density and therefore corresponded to
a typical liquid-state point. For more details about the
technical aspects of the simulations, see Ref. [10].

For the mixture of colloids with short (/=10) poly-
mers, we found that the local structure, as measured by
the radial distribution function g(r), differs only slightly
from the structure of the pure hard-sphere fluid at the
same density. In particular the entropic interaction in-
duced by the polymers leads to a slight increase of g(r)
close to r =0. In contrast, for mixtures of colloids with
long (I=50) polymers, the local structure of the colloids
clearly differs from the pure hard-sphere fluid. This can
be seen in Fig. 2, where the radial distribution function
g(r) for polymer fugacities z* =0.01 and 0.02 is plotted.
We observe that the polymer-induced attraction leads to
a strong increase of g(r) for r close to o. In addition, the
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FIG. 2. Radial distribution functions of hard-sphere colloids
in a mixture with long (/=50) polymers for polymer fugacities
z*=0.01 (upper part) and z* =0.02 (lower part). The colloid
density is 56% of regular close packing. The solid lines indicate
the results obtained with the full polymer-induced many-body
interaction (4). The dashed lines indicate the results obtained
with the two-body approximation to the polymer-induced in-
teraction. The dotted lines denote the hard-sphere result and
serve as reference.

second peak of g(r) has also increased, and moves to
lower values of r with increasing polymer fugacity.

In order to quantify the effect of the many-body part of
the effective polymer-induced interaction zQ,(r") (5),
we performed additional simulations in which we re-
placed the full polymer-induced interaction by the sum of
the two-body contributions: zX,; <;@7(r;,r;). For the
system with short (/=10) polymers we found that the ra-
dial distribution functions obtained with the two-body ap-
proximation and the full polymer-induced interaction ex-
actly matches. This is to be expected, as we have seen
above (see Fig. 1) that the three-body contribution is
negligible for the short polymers. In contrast, the system
with the long (/=50) polymers shows a striking differ-
ence. The radial distribution functions for the colloids
obtained for this system are compared in Fig. 2, for both
z*=0.01 and 0.02. We observe from the figure that the
two-body approximation strongly overestimates the poly-
mer-induced attraction. At z* =0.02 the second peak in
g(r) has even split, indicating a drastic but spurious
change in the local structure of the colloids. Apparently
the three-body contribution, which acts as a repulsive
force at short distances, has a significant effect on the lo-



VOLUME 67, NUMBER 9

PHYSICAL REVIEW LETTERS

26 AUGUST 1991

cal structure. This result shows that the two-body contri-
butions alone fail to describe the local structure of col-
loidal systems in osmotic equilibrium with long polymers.

In conclusion, we have developed an efficient method
that allows us to simulate a simple model for polymer-
colloid mixtures under the ‘“‘experimental” condition of
constant osmotic pressure. We computed the two- and
three-body contributions to the polymer-induced entropic
interaction between hard-sphere colloidal particles. For
long polymers, we have found that taking into account
only the two-body contributions leads to a strong overes-
timation of the tendency of the colloid to cluster, even at
relative low polymer concentrations. These results sug-
gest that there is a need to reconsider the theoretical
descriptions of polymer-induced clustering in colloidal
dispersions.
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