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Velocity-Selective Resonances and Sub-Doppler Laser Cooling
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We describe several one-dimensional sub-Doppler laser-cooling experiments that cool Rb to finite and
zero velocities in a magnetic field and polarization gradients. We then present a physical picture that
unifies these measurements in terms of coherent two-photon velocity-selective resonances (VSR) be-
tween atomic ground-state sublevels (including Raman resonances). We propose several sub-Doppler
cooling schemes without fields or without polarization gradients, based on VSR between nondegenerate
ground states.

PACS nUmbers: 32.80.Pj, 42.50.Vk

Laser cooling to temperatures well below the Doppler
limit TD = 0 y/2ktt has been demonstrated experimentally
for several atoms and diA'erent experimental configura-
tions [1-8]. The first theoretical models [9,10] attributed
the lower temperatures to the nonadiabatic response of a
multilevel atom moving through the optical polarization
gradients that are always present in a three-dimensional
optical molasses. It has also been shown that sub-
Doppler laser cooling (SDLC) can be achieved in a one-
dimensional optical molasses of constant polarization by
adding a small magnetic field [3-7]. In both cases the
cooling arises from the nonadiabatic response of moving
atoms lagging behind the changes of the optical field. A
recent more general theory presents an extended descrip-
tion of SDLC [11,12].

Recently, we reported SDLC to a nonzero resonance
velocity v„proportional to an applied magnetic field [5,6].
We attribute this to momentum transfer by coherent
two-photon transitions that induce velocity-selective reso-
nances (VSR) between two ground-state (g.s.) sublevels.
Such VSR are similar to magnetic resonances induced by
modulated light [13]. Such coherent two-photon Raman
processes produce many interesting phenomena in laser
spectroscopy such as pressure-induced resonances [14],
narrow (subnatural width) resonances [15],and coherent
population trapping [16]. Recently, Berman has shown
that narrow resonances and SDLC are related [17].

In this Letter we show that the VSR picture can be
generalized and extended to include most other SDLC
experiments. First we present our data from several one-
dimensional experiments in an applied uniform magnetic
field 8, with and without polarization gradients, that sup-
port this point of view, then we generalize the VSR pic-
ture to describe most other SDLC experiments, and Anal-

ly we suggest extensions to other atoms and applications.
The VSR occur when the diAerence of the Doppler-

shifted frequencies of two light beams seen by a moving
atom, (k~ —ki) v=8k. v, equals the frequency splitting
between a pair of g.s. sublevels. In the VSR picture the

laser polarization and the direction of 8 can be used to
predict the velocity to which atoms are cooled. We em-
phasize that VSR alone is not sufFicient for SDLC; there
must also be dissipation, such as the nonadiabatic
response of moving atoms to optical pumping by the
changing light field.

Our experimental apparatus was described in Refs.
[4-6]. There is a retrorellection mirror that forms a 1D
optical molasses to transversely cool a Rb atomic beam.
In front of it there is an additional quarter-wave plate so
that two kinds of polarization gradient schemes, o.+-o.
and linear & linear, can be used. We excite the 5S 5P
transition at X=780 nm whose natural width is 6 MHz
and whose saturation intensity is 1.6 mW/cm . The
atomic beam profile is measured by a scanning hot wire
1.3 m from the interaction region. Three Helmholtz coil
pairs provide a controlled field B.

In various experimental configurations, the atomic
beam is deflected to a nonzero transverse velocity v„but
still may be cooled to below the Doppler limit [5,6].
However, atoms with same v, but different longitudinal
velocities arrive at diAerent positions in the detector
plane, thus broadening the signal. To solve this problem
we make a velocity-selected Rb beam by optical pump-
ing with two diode lasers. The first one crosses the atom-
ic beam perpendicularly and is tuned to optically pump
all the atoms into the F =2 hyperfine level of the g.s. The
second crosses the atomic beam at an angle —16, and is

frequency locked 65 MHz below the F=2 F'=3 tran-
sition using the saturated absorption signal from an aux-
iliary Rb cell. This laser excites a particular velocity
class (v—=200 m/s), chosen by the Doppler shift, thus
populating the F=3 g.s. by spontaneous emission. The
optical molasses (formed by a third diode laser) is tuned
for the F=3 to F'=4 transition. Therefore those atoms
participating in the cooling and deAecting process are lon-
gitudinally velocity selected with resolution of —50 m/s,
determined by the angle and the power-broadened width
of the transition. With mechanical shutters we sequen-
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FIG. 1. Schematic diagram of atomic transitions at the reso-

nance condition in VSR. (a) The o+-a case where the g.s.
energies are split by a magnetic field. VSR between them re-
quires the light frequencies to be different, and in the rest frame
of a moving atom this is provided by the Doppler shift. The en-
ergy splitting could be much larger (e.g. , hyperfine structure)
and the light have diff'erent laboratory-frame frequencies. (b)
The scheme for the linear' linear case. (c) The case for v, =0
when a magnetic field is applied that splits the sublevels by
more than yp. Different polarizations at different places cause
either hMF= ~ I or AMF=O VSR. (d) The degenerate case
where cooling is to v =0.

tially record the atomic beam profile with and without ve-
locity selection.

One of the simplest examples of VSR is the o+-cr
polarization gradient scheme with an applied magnetic
field B along the laser beam direction. Since the cr+

(rr ) laser beams drive hMF =+1 ( —I) transitions, a
coherent two-photon process couples g.s. sublevels whose
MF values differ by ~2 [see Fig. 1(a)]. The condition
for VSR is then 2kv„'=2ro„where ro, =gFpsB/ft is the
Larmor frequency. Obviously this scheme can only work
for Jg, ~ l.

Figure 2 shows a typical set of cooling and deAection
data using the velocity-selected Rb beam for various
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FIG. 3. The deflection of the peaks in Fig. 2 vs B. Note that
the deflection reverses when B is reversed. The straight line is
v = ca-/k.

values of 8. The undisturbed atomic beam has a Hat
profile spanning + 4 mm. Figure 3 shows the displace-
ment of the peaks of Fig. 2 versus B. DeAection of the
cooled atoms out of the main atomic beam is easily
detected. For B & 2 6 our data show a velocity spread of
—5 cm/s, well below the 1D Doppler limit vD =10 cm/s
for Rb. For larger 8 the beam profile broadening by the
residual longitudinal velocity spread becomes important.
At B=3 6, v„' —1 m/s and the longitudinal velocity
spread of 50 m/s predicts a peak 1.6 mm wide. This
deAection can be alternatively interpreted by applying
Larmor's theorem, which implies that a 8 field along a
cr+ (a ) light beam has the same effect on the evolution
of an atom as lowering (raising) the optical frequency by
ni, [11]. The connection between atomic motion in a B
field and the Larmor theorem has already been described
[9].

VSR can also be created using optical molasses formed
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FIG. 2. Change in the velocity-selected beam profile of Rb
1.3 m away from a cr+-o. optical molasses with a magnetic
field along the laser axis. The laser parameters are saturation
parameter s =3 and detuning 6= —12 MHz.

FIG. 4. Change in the velocity-selected beam profile of 'Rb
1.3 m away from a linear ~ linear optical molasses with B along
one of the laser polarizations. The laser parameters are s =3
and 6= —12 MHz.
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FIG. 5. The deflection of the peaks in Fig. 4 vs B. The
straight line is v =co-/2k.

by two laser beams with orthogonal linear polarizations
and 8 perpendicular to their k vectors. With B and the
quantization axis parallel to the polarization of one laser
beam it induces AMF =0 transitions, while the other
beam induces h,MF = ~ 1 transitions [Fig. 1(b)]. There-
fore VSR can couple g.s. sublevels with MF diAering by
~1 so the VSR condition becomes v„=co,/2k, one-half
of v„' as in the o.+-o. case.

In Fig. 4 we show the measured beam profile for vari-
ous values of B. The data show two asymmetric peaks of
unequal height. This asymmetry is to be expected [12]
because the conditions for which the force is an odd func-
tion of velocity no longer hold in this case. The asym-
metry is determined by the direction of B; rotation of B
by 90 about the laser axis reverses it. This is clear since
reversing the atomic velocity and rotating B by 90 leaves
the geometry unchanged. Figure 5 shows the position of
one of the deAected peaks versus 8. We emphasize that
the atoms are not simply deAected, but are always cooled
to v, with a width well below the Doppler limit.

The VSR discussed so far involve Raman transitions
that couple two different g.s. sublevels [see Figs. 1(a) and
1(b)]. In a polarization gradient and strong 8 field it is
also possible to have VSR that return an atom to its origi-
nal g.s. sublevel, and transfer a photon from one beam to
another [Fig. 1(c)]. This leads to the resonant condition
v, =0. As before, the state of a moving atom will lag
behind the changing optical field as the polarization
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FIG. 6. Change in the velocity-selected beam profile of " Rb
1.3 m away from a linear J linear optical molasses with B at
45 to both laser polarizations. The laser parameters are s =3
and (a) 6= —18 MHz, (b) 6=+18 MHz. Note that for
v =v„6& 0 produces cooling and 6 & 0 produces heating.

varies in space. We have observed this by applying B at
45' to both laser polarizations in the linear l linear con-
figuration. Figure 6 shows our data using the velocity-
selected Rb beam. There are three cold peaks with
sub-Doppler spread for 8&0. The two side peaks corre-
spond to the type of VSR shown in Fig. 1(b) and the
center one, which does not shift with 8, corresponds to
the type shown in 1(c), and satisfies v, =0.

Our numerical calculations [12] corroborate all the re-
sults discussed above. %'hen co, is much larger than the
optical pumping rate, we can even find analytical results
by transforming the evolution equations for the density
matrix and the force operator to a frame rotating about B
at co, . The resulting expression for the force shows a
v, =0 resonance only if alignment over the g.s. sublevels
can exist and if the polarization of the laser beams are
diAerent and not along B. A detailed analysis is forth-
coming.

When the VSR condition is satisfied, the velocity-
dependent force on moving atoms has a dispersion-shaped
resonant enhancement [12,17] whose width y'/k is deter-
mined by the damping rate of the coherence y', namely,
the rate of excitation followed by spontaneous emission.
Since y' can be very small, the narrow resonance can pro-
duce a strong velocity damping. Heating by momentum
diff'usion decreases with y' so that sub-Doppler tempera-
tures may be obtained. As long as hk. v„ is considerably
larger (smaller) than y', atoms are cooled toward v„
(v=0). When Ak. v„=y', only numerical solutions can
predict the velocity distribution.

The role of the polarization gradient in previously stud-
ied cases of SDLC with 8=0 [1-3,8-10] can now be dis-
cussed in terms of the VSR picture. With 8=0 the g.s.
sublevels are nearly degenerate, mixed polarizations per-

1096



VOLUME 67, NUMBER 9 PH YSICAL REVIEW LETTERS 26 AUGUST 1991

mit coherent two-photon transitions to be driven by pho-
tons from different beams, and U, =0 as in Fig. 1(d).

We point out that coherent population trapping in a
three-level A system that cools below the recoil limit [16]
is the limiting case of VSR with vanishing width. At res-
onance, atoms are in a coherent superposition of atomic
g.s. that cannot absorb light. The VSR model may thus
be viewed as a generalization of coherent population trap-
ping.

The VSR picture not only applies to the known SDLC
processes, but also suggests extensions to more complicat-
ed systems. For example, SDLC in Na can be realized
by VSR between two g.s. hyperfine sublevels induced by
two lasers tuned to F=1 F'=2 and F=2 F'=2
transitions, respectively [see Figs. 1(a) and 1(b)]. Simi-
larly, in Tl we could use two lasers at 378 and 535 nm to
create VSR between two g.s. fine-structure levels 6 P3/2
and 6 P~I2. Experimentally we could exploit technologi-
cal progress to produce such light by frequency doubling
both a 756-nm diode laser and a diode-pumped Nd+
laser. Thus it makes a very attractive way to prepare
high-density, cold Tl atoms for precision measurement of
an electric dipole moment. For two-frequency laser cool-
ing, the atoms will be cooled to the resonance velocity
satisfying hk v =co] —co2 —5,

'
where the co; are the laser

frequencies and Ah, is the separation between the two g.s.
A recent calculation showed the feasibility of SDLC in a
nondegenerate three-level scheme [18], consistent with
our VSR model.

Finally, we propose some applications of cooling to
nonzero velocity. If the deflection is applied to a de-
celerated beam, it is a superb method for extracting or
steering a well-defined cold beam. Also, one could imag-
ine building an atomic storage ring based on this
de]]ecting and cooling technique that could provide a
beam that is ideal for precision spectroscopy, the study of
cold collisions, and collective effects of cold atoms.
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